Logic Synthesis For Fpga Based Mealy Finite State Machines

Download Logic Synthesis For Fpga Based Mealy Finite State Machines PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Logic Synthesis For Fpga Based Mealy Finite State Machines book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Logic Synthesis for FPGA-Based Mealy Finite State Machines

This book is devoted to the logic synthesis of field programmable gate array (FPGA)-based circuits of Mealy finite state machines (FSM). Three new methods of state assignment are proposed, which allows obtaining FSM circuits required minimum amount of internal chip resources. Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design contains several original synthesis and optimization methods based on the structural decomposition of FPGA-based FSM circuits developed by the authors. To optimize FSM circuits, the authors introduce the use of three methods of state assignment: twofold, extended, and composite. These methods allow for the creation of two- or three-level architectures of FSM circuits. The authors also demonstrate how the proposed methods, FSM architectures and synthesis methods can replace known solutions based on either functional decomposition or classical methods of structural decomposition. The authors also show how these architectures have regular systems of interconnections and demonstrate positive features compared to methods based on functional decomposition, including producing circuits with fewer elements that are faster and consume less power than their counterparts. The book includes experimental results proving the efficiency of the proposed solutions and compares the numbers in Look-up Tables (LUTs), showing the performance (maximum operating frequency) and power consumption for various methods of state assignment. The audience for this book is students, researchers, and engineers specializing in computer science/ engineering, electronics, and telecommunications. It will be especially useful for engineers working within the scope of algorithms, hardware-based software accelerators and control units, and systems based on the use of FPGAs.
Logic Synthesis for FPGA-Based Finite State Machines

This book discusses control units represented by the model of a finite state machine (FSM). It contains various original methods and takes into account the peculiarities of field-programmable gate arrays (FPGA) chips and a FSM model. It shows that one of the peculiarities of FPGA chips is the existence of embedded memory blocks (EMB). The book is devoted to the solution of problems of logic synthesis and reduction of hardware amount in control units. The book will be interesting and useful for researchers and PhD students in the area of Electrical Engineering and Computer Science, as well as for designers of modern digital systems.
Logic Synthesis for VLSI-Based Combined Finite State Machines

Author: Alexander Barkalov
language: en
Publisher: Springer Nature
Release Date: 2022-11-24
The book is devoted to design and optimization of control units represented by combined finite state machines (CFSMs). The CFSMs combine features of both Mealy and Moore FSMs. Having states of Moore FSM, they produce output signals of both Mealy and Moore types. To optimize the circuits of CFSMs, we propose to use optimization methods targeting both Mealy and Moore FSMs. The book contains some original synthesis and optimization methods targeting hardware reduction in VLSI-based CFSM circuits. These methods take into account the peculiarities of both a CFSM model and a VLSI chip in use. The optimization is achieved due to combining classical optimization methods with new methods proposed in this book. These new methods are a mixed encoding of collections of microoperations and a twofold state assignment in CFSMs. All proposed methods target reducing the numbers of arguments in systems of Boolean functions representing CFSM circuits. Also, we propose to use classes of pseudoequivalent states of Moore FSMs to reduce the number of product terms in these systems.The book includes a lot of examples which contributes to a better understanding of the features of the synthesis methods under consideration. This is the first book entirely devoted to the problems associated with synthesis and optimization of VLSI-based CFSMs. We hope that the book will be interesting and useful for students and PhD students in the area of Computer Science, as well as for designers of various digital systems. We think that proposed CFSM models enlarge the class of models applied for implementation of control units with modern VLSI chips.