Local Conditions For Cycles In Graphs

Download Local Conditions For Cycles In Graphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Local Conditions For Cycles In Graphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Local Conditions for Cycles in Graphs

Author: Jonas Granholm
language: en
Publisher: Linköping University Electronic Press
Release Date: 2019-05-06
A Hamilton cycle in a graph is a cycle that passes through every vertex of the graph. A graph is called Hamiltonian if it contains such a cycle. The problem of determining if a graph is Hamiltonian has been studied extensively, and there are many known sufficient conditions for Hamiltonicity. A large portion of these conditions relate the degrees of vertices of the graph to the number of vertices in the entire graph, and thus they can only apply to a limited set of graphs with high edge density. In a series of papers, Asratian and Khachatryan developed local analogues of some of these criteria. These results do not suffer from the same drawbacks as their global counterparts, and apply to wider classes of graphs. In this thesis we study this approach of creating local conditions for Hamiltonicity, and use it to develop local analogues of some classic results. We also study how local criteria can influence other global properties of graphs. Finally, we will see how these local conditions can allow us to extend theorems on Hamiltonicity to infinite graphs.
Graph Theory

This second volume in a two-volume series provides an extensive collection of conjectures and open problems in graph theory. It is designed for both graduate students and established researchers in discrete mathematics who are searching for research ideas and references. Each chapter provides more than a simple collection of results on a particular topic; it captures the reader’s interest with techniques that worked and failed in attempting to solve particular conjectures. The history and origins of specific conjectures and the methods of researching them are also included throughout this volume. Students and researchers can discover how the conjectures have evolved and the various approaches that have been used in an attempt to solve them. An annotated glossary of nearly 300 graph theory parameters, 70 conjectures, and over 600 references is also included in this volume. This glossary provides an understanding of parameters beyond their definitions and enables readers to discover new ideas and new definitions in graph theory. The editors were inspired to create this series of volumes by the popular and well-attended special sessions entitled “My Favorite Graph Theory Conjectures,” which they organized at past AMS meetings. These sessions were held at the winter AMS/MAA Joint Meeting in Boston, January 2012, the SIAM Conference on Discrete Mathematics in Halifax in June 2012, as well as the winter AMS/MAA Joint Meeting in Baltimore in January 2014, at which many of the best-known graph theorists spoke. In an effort to aid in the creation and dissemination of conjectures and open problems, which is crucial to the growth and development of this field, the editors invited these speakers, as well as other experts in graph theory, to contribute to this series.
Graph Drawing

Author: Roberto Tamassia
language: en
Publisher: Springer Science & Business Media
Release Date: 1995
"This volume constitutes the proceedings of the DIMACS International Workshop on Graph Drawing, GD '94, held in Princeton, New Jersey in October 1994. The 50 papers and system descriptions presented address the problem of constructing geometric representations of abstract graphs, networks and hypergraphs, with applications to key technologies such as software engineering, databases, visual interfaces, and circuit layout; they are organized in sections on three-dimensional drawings, orthogonal drawings, planar drawings, crossings, applications and systems, geometry, system demonstrations, upward drawings, proximity drawings, declarative and other approaches; in addition reports on a graph drawing contest and a poster gallery are included."--PUBLISHER'S WEBSITE.