Linear And Multiobjective Programming With Fuzzy Stochastic Extensions

Download Linear And Multiobjective Programming With Fuzzy Stochastic Extensions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear And Multiobjective Programming With Fuzzy Stochastic Extensions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Linear and Multiobjective Programming with Fuzzy Stochastic Extensions

Author: Masatoshi Sakawa
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-29
Although several books or monographs on multiobjective optimization under uncertainty have been published, there seems to be no book which starts with an introductory chapter of linear programming and is designed to incorporate both fuzziness and randomness into multiobjective programming in a unified way. In this book, five major topics, linear programming, multiobjective programming, fuzzy programming, stochastic programming, and fuzzy stochastic programming, are presented in a comprehensive manner. Especially, the last four topics together comprise the main characteristics of this book, and special stress is placed on interactive decision making aspects of multiobjective programming for human-centered systems in most realistic situations under fuzziness and/or randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is a concise and condensed description of the theory of linear programming and its algorithms. Chapter 3 discusses fundamental notions and methods of multiobjective linear programming and concludes with interactive multiobjective linear programming. In Chapter 4, starting with clear explanations of fuzzy linear programming and fuzzy multiobjective linear programming, interactive fuzzy multiobjective linear programming is presented. Chapter 5 gives detailed explanations of fundamental notions and methods of stochastic programming including two-stage programming and chance constrained programming. Chapter 6 develops several interactive fuzzy programming approaches to multiobjective stochastic programming problems. Applications to purchase and transportation planning for food retailing are considered in Chapter 7. The book is self-contained because of the three appendices and answers to problems. Appendix A contains a brief summary of the topics from linear algebra. Pertinent results from nonlinear programming are summarized in Appendix B. Appendix C is a clear explanation of the Excel Solver, one of the easiest ways to solve optimization problems, through the use of simple examples of linear and nonlinear programming.
Fuzzy Stochastic Multiobjective Programming

Author: Masatoshi Sakawa
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-02-03
Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.
Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty

Author: Shi-Yu Huang
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.