Lectures On Infinite Dimensional Lie Algebra


Download Lectures On Infinite Dimensional Lie Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lectures On Infinite Dimensional Lie Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Infinite-dimensional Lie Algebras


Infinite-dimensional Lie Algebras

Author: Minoru Wakimoto

language: en

Publisher: American Mathematical Soc.

Release Date: 2001


DOWNLOAD





This volume begins with an introduction to the structure of finite-dimensional simple Lie algebras, including the representation of ${\widehat {\mathfrak {sl}}}(2, {\mathbb C})$, root systems, the Cartan matrix, and a Dynkin diagram of a finite-dimensional simple Lie algebra. Continuing on, the main subjects of the book are the structure (real and imaginary root systems) of and the character formula for Kac-Moody superalgebras, which is explained in a very general setting. Only elementary linear algebra and group theory are assumed. Also covered is modular property and asymptotic behavior of integrable characters of affine Lie algebras. The exposition is self-contained and includes examples. The book can be used in a graduate-level course on the topic.

Lectures On Infinite-dimensional Lie Algebra


Lectures On Infinite-dimensional Lie Algebra

Author: Minoru Wakimoto

language: en

Publisher: World Scientific

Release Date: 2001-10-26


DOWNLOAD





The representation theory of affine Lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three excellent books on it, written by Victor G Kac. This book begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine Lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations.

Highest Weight Representations Of Infinite Dimensional Lie Algebra


Highest Weight Representations Of Infinite Dimensional Lie Algebra

Author: Victor G Kac

language: en

Publisher: World Scientific

Release Date: 1988-04-01


DOWNLOAD





This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl∞ of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP → KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.