Lecture Notes On Real Analysis


Download Lecture Notes On Real Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Lecture Notes On Real Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Lecture Notes in Real Analysis


Lecture Notes in Real Analysis

Author: Xiaochang Wang

language: en

Publisher: Springer

Release Date: 2018-11-21


DOWNLOAD





This compact textbook is a collection of the author’s lecture notes for a two-semester graduate-level real analysis course. While the material covered is standard, the author’s approach is unique in that it combines elements from both Royden’s and Folland’s classic texts to provide a more concise and intuitive presentation. Illustrations, examples, and exercises are included that present Lebesgue integrals, measure theory, and topological spaces in an original and more accessible way, making difficult concepts easier for students to understand. This text can be used as a supplementary resource or for individual study.

Basic Analysis I


Basic Analysis I

Author: Jiri Lebl

language: en

Publisher: Createspace Independent Publishing Platform

Release Date: 2018-05-08


DOWNLOAD





Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.

Introduction to Real Analysis


Introduction to Real Analysis

Author: Christopher Heil

language: en

Publisher: Springer

Release Date: 2019-07-20


DOWNLOAD





Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject. The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more. Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.