Least Squares Data Fitting With Applications

Download Least Squares Data Fitting With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Least Squares Data Fitting With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Least Squares Data Fitting with Applications

Included are; an overview of computational methods together with their properties and advantages; topics from statistical regression analysis that help readers to understand and evaluate the computed solutions; many examples that illustrate the techniques and algorithmsLeast Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.
Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space

Author: Sung Joon Ahn
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-12-07
Due to the continuing progress of sensor technology, the availability of 3-D cameras is already foreseeable. These cameras are capable of generating a large set of measurement points within a very short time. There are a variety of 3-D camera applications in the fields of robotics, rapid product development and digital factories. In order to not only visualize the point cloud but also to recognize 3-D object models from the point cloud and then further process them in CAD systems, efficient and stable algorithms for 3-D information processing are required. For the automatic segmentation and recognition of such geometric primitives as plane, sphere, cylinder, cone and torus in a 3-D point cloud, efficient software has recently been developed at the Fraunhofer IPA by Sung Joon Ahn. This book describes in detail the complete set of ‘best-?t’ algorithms for general curves and surfaces in space which are employed in the Fraunhofer software.
Data Fitting and Uncertainty

The subject of data fitting bridges many disciplines, especially those traditionally dealing with statistics like physics, mathematics, engineering, biology, economy, or psychology, but also more recent fields like computer vision. This book addresses itself to engineers and computer scientists or corresponding undergraduates who are interested in data fitting by the method of least-squares approximation, but have no or only limited pre-knowledge in this field. Experienced readers will find in it new ideas or might appreciate the book as a useful work of reference. Familiarity with basic linear algebra is helpful though not essential as the book includes a self-contained introduction and presents the method in a logical and accessible fashion. The primary goal of the text is to explain how data fitting via least squares works. The reader will find that the emphasis of the book is on practical matters, not on theoretical problems. In addition, the book enables the reader to design own software implementations with application-specific model functions based on the comprehensive discussion of several examples. The text is accompanied with working source code in ANSI-C for fitting with weighted least squares including outlier detection. Among others the book covers following topics * fitting of linear and nonlinear functions with one- or multi-dimensional variables * weighted least-squares * outlier detection * evaluation of the fitting results * different optimisation strategies * combined fitting of different model functions * total least-squares approach with multi-dimensional conditions