Jumping Computation

Download Jumping Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Jumping Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Jumping Computation

Jumping Computation: Updating Automata and Grammars for Discontinuous Information Processing is primarily a theoretically oriented treatment of jumping automata and grammars, covering all essential theoretical topics concerning them, including their power, properties, and transformations. From a practical viewpoint, it describes various concepts, methods, algorithms, techniques, case studies and applications based upon these automata and grammars. In today’s computerized world, the scientific development and study of computation, referred to as the theory of computation, plays a crucial role. One important branch, language theory, investigates how to define and study languages and their models, which formalize algorithms according to which their computation is executed. These language-defining models are classified into two basic categories: automata, which define languages by recognizing their words, and grammars, which generate them. Introduced many decades ago, these rules reflect classical sequential computation. However, today’s computational methods frequently process information in a fundamentally different way, frequently “jumping” over large portions of the information as a whole. This book adapts classical models to formalize and study this kind of computation properly. Simply put, during their language-defining process, these adapted versions, called jumping automata and grammars, jump across the words they work on. The book selects important models and summarizes key results about them in a compact and uniform way. It relates each model to a particular form of modern computation, such as sequential, semi-parallel and totally parallel computation, and explains how the model in question properly reflects and formalizes the corresponding form of computation, thus allowing us to obtain a systematized body of mathematically precise knowledge concerning the jumping computation. The book pays a special attention to power, closure properties, and transformations, and also describes many algorithms that modify jumping grammars and automata so they satisfy some prescribed properties without changing the defined language. The book will be of great interest to anyone researching the theory of computation across the fields of computer science, mathematics, engineering, logic and linguistics.
Lectures in Parallel Computation

Author: Alan Gibbons
language: en
Publisher: Cambridge University Press
Release Date: 1993-03-18
The foundations of parallel computation, especially the efficiency of computation, are the concern of this book. Distinguished international researchers have contributed fifteen chapters which together form a coherent stream taking the reader who has little prior knowledge of the field to a position of being familiar with leading edge issues. The book may also function as a source of teaching material and reference for researchers. The first part is devoted to the Parallel Random Access Machine (P-RAM) model of parallel computation. The initial chapters justify and define the model, which is then used for the development of algorithm design in a variety of application areas such as deterministic algorithms, randomisation and algorithm resilience. The second part deals with distributed memory models of computation. The question of efficiently implementing P-RAM algorithms within these models is addressed as are the immensely interesting prospects for general purpose parallel computation.
Modern Language Models and Computation

This textbook gives a systematized and compact summary, providing the most essential types of modern models for languages and computation together with their properties and applications. Most of these models properly reflect and formalize current computational methods, based on parallelism, distribution and cooperation covered in this book. As a result, it allows the user to develop, study, and improve these methods very effectively. This textbook also represents the first systematic treatment of modern language models for computation. It covers all essential theoretical topics concerning them. From a practical viewpoint, it describes various concepts, methods, algorithms, techniques, and software units based upon these models. Based upon them, it describes several applications in biology, linguistics, and computer science. Advanced-level students studying computer science, mathematics, linguistics and biology will find this textbook a valuable resource. Theoreticians, practitioners and researchers working in today’s theory of computation and its applications will also find this book essential as a reference.