Introduction To The Theory Of Critical Phenomena

Download Introduction To The Theory Of Critical Phenomena PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To The Theory Of Critical Phenomena book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
The Theory of Critical Phenomena

The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.
Introduction to the Theory of Critical Phenomena

This book provides a comprehensive introduction to the theory of phase transitions and critical phenomena. The content covers a period of more than 100 years of theoretical research of condensed matter phases and phase transitions providing a clear interrelationship with experimental problems. It starts from certain basic University knowledge of thermodynamics, statistical physics and quantum mechanics. The text is illustrated with classic examples of phase transitions. Various types of phase transition and (multi)critical points are introduced and explained. The classic aspects of the theory are naturally related with the modern developments. This interrelationship and the field-theoretical renormalization group method are presented in details. The main applications of the renormalization group methods are presented. Special attention is paid to the description of quantum phase transitions. This edition contains a more detailed presentation of the renormalization group method and its applications to particular systems.