Interatomic Potential And Structural Stability

Download Interatomic Potential And Structural Stability PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interatomic Potential And Structural Stability book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Interatomic Potential and Structural Stability

Author: Kiyoyuki Terakura
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-08
Structural stability is of fundamental importance in materials science. Up-to-date information on the theoretical aspects of phase stability of materials is contained in this volume. Most of the first-principles calculations are based on the local-density approximation (LDA). In contrast, this volume contains very recent results of "going beyond LDA", such as the density gradient expansion and the quantum Monte-Carlomethod. Following the recently introduced theoretical methods for the calculation of interatomic potentials, forces acting on atoms and total energies such as the Car-Parrinello, the effective-medium and the bond-ordermethod, attempts have been made to develop even more sophisticated methods such as the order-N method in electronic-structure calculations. The present status of these methods and their application to real systems are described. In addition, in order to study the phase stability atfinite temperatures, the microscopic calculations have to be combined with statistical treatment of the systems to describe, e.g. order-disorder transitions on the Si(001) surface or alloy phase diagrams. This book contains examples for this type of calculations.
Electronic Structure of Alloys, Surfaces and Clusters

Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, surfaces and clusters. Understanding the electronic structure of these systems is fundamental not only for the basic science, but also constitutes a very important step in various technological aspects, such as tuning their stabilities, chemical and catalytic reactivities and magnetism. Expert practitioners give an up-to-date account of the field with enough detailed background so that even a newcomer can follow the development. The theoretical framework is discussed in addition to the present status of knowledge in the field. Electronic Structure of Alloys, Surfaces and Clusters also includes an extensive bibliography which provides a comprehensive reading list of work on the topic.