Integration Between The Lebesgue Integral And The Henstock Kurzweil Integral

Download Integration Between The Lebesgue Integral And The Henstock Kurzweil Integral PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integration Between The Lebesgue Integral And The Henstock Kurzweil Integral book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Henstock-Kurzweil Integration on Euclidean Spaces

The Henstock?Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock?Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.
Theories of Integration

This book presents a historical development of the integration theories of Riemann, Lebesgue, Henstock-Kurzweil, and McShane, showing how new theories of integration were developed to solve problems that earlier theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and can be used separately in teaching a portion of an introductory course on real analysis. There is a sufficient supply of exercises to make the book useful as a textbook.
The Kurzweil-Henstock Integral for Undergraduates

This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically viewable, are more easy to be understood. The theory is developed also for functions of several variables, and for differential forms, as well, finally leading to the celebrated Stokes–Cartan formula. In the appendices, differential calculus in RN is reviewed, with the theory of differentiable manifolds. Also, the Banach–Tarski paradox is presented here, with a complete proof, a rather peculiar argument for this type of monographs.