Integral Transforms And Their Applications

Download Integral Transforms And Their Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Integral Transforms And Their Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Integral Transforms and Their Applications

Author: B. Davies
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-11-27
This book is intended to serve as introductory and reference material for the application of integral transforms to a range of common mathematical problems. It has its im mediate origin in lecture notes prepared for senior level courses at the Australian National University, although I owe a great deal to my colleague Barry Ninham, a matter to which I refer below. In preparing the notes for publication as a book, I have added a considerable amount of material ad- tional to the lecture notes, with the intention of making the book more useful, particularly to the graduate student - volved in the solution of mathematical problems in the physi cal, chemical, engineering and related sciences. Any book is necessarily a statement of the author's viewpoint, and involves a number of compromises. My prime consideration has been to produce a work whose scope is selective rather than encyclopedic; consequently there are many facets of the subject which have been omitted--in not a few cases after a preliminary draft was written--because I v believe that their inclusion would make the book too long.
Integral Transforms and Their Applications, Second Edition

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.
Local Fractional Integral Transforms and Their Applications

Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods