Image Processing And Data Analysis


Download Image Processing And Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Image Processing And Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Image Processing and Data Analysis


Image Processing and Data Analysis

Author: Jean-Luc Starck

language: en

Publisher: Cambridge University Press

Release Date: 1998


DOWNLOAD





Powerful techniques have been developed in recent years for the analysis of digital data, especially the manipulation of images. This book provides an in-depth introduction to a range of these innovative, avante-garde data-processing techniques. It develops the reader's understanding of each technique and then shows with practical examples how they can be applied to improve the skills of graduate students and researchers in astronomy, electrical engineering, physics, geophysics and medical imaging. What sets this book apart from others on the subject is the complementary blend of theory and practical application. Throughout, it is copiously illustrated with real-world examples from astronomy, electrical engineering, remote sensing and medicine. It also shows how many, more traditional, methods can be enhanced by incorporating the new wavelet and multiscale methods into the processing. For graduate students and researchers already experienced in image processing and data analysis, this book provides an indispensable guide to a wide range of exciting and original data-analysis techniques.

Statistical Image Processing and Multidimensional Modeling


Statistical Image Processing and Multidimensional Modeling

Author: Paul Fieguth

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-10-17


DOWNLOAD





Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.

Big Data Analytics for Satellite Image Processing and Remote Sensing


Big Data Analytics for Satellite Image Processing and Remote Sensing

Author: Swarnalatha, P.

language: en

Publisher: IGI Global

Release Date: 2018-03-09


DOWNLOAD





The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.