Iii V Single Photon Avalanche Detector With Built In Negative Feedback For Nir Photon Detection


Download Iii V Single Photon Avalanche Detector With Built In Negative Feedback For Nir Photon Detection PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Iii V Single Photon Avalanche Detector With Built In Negative Feedback For Nir Photon Detection book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

III-V Single Photon Avalanche Detector with Built-in Negative Feedback for NIR Photon Detection


III-V Single Photon Avalanche Detector with Built-in Negative Feedback for NIR Photon Detection

Author: Kai Zhao

language: en

Publisher:

Release Date: 2008


DOWNLOAD





Single photon detector is the key component in many applications. Extensive research has been focused on developing novel Single Photon Avalanche Detectors (SPADs) to improve the device performance. This dissertation presents the first III-V single photon avalanche detector with built-in negative feedback mechanism. This new type of device has several advantageous features compared to the conventional III-V SPADs. The development of such devices has evolved from the InGaAs MOS-SPADs to the InGaAs Transient Carrier Buffer (TCB) SPADs. In general, to detect single photons, a conventional Geiger mode APD is biased above its breakdown voltage and an external quenching circuit or gated mode operation is required to prevent the device from thermal run-away. Benefiting from the negative feedback, the prototype device of the InGaAs TCB SPADs has successfully demonstrated the true free-running single photon detection at 1.55um wavelength without using any external quenching circuit or gated mode operation. This could greatly simplify the complexity of the SPAD supporting circuit and be especially beneficial for the applications for which large scale single photon array detector is required. The prototype device also has demonstrated a record low excess noise factor of 1.001 at a gain of 106. With such low excess noise, this type of devices becomes also promising for photon number resolving applications. This dissertation also provides a physical model to describe the self-quenching and self-recovering process of the InGaAs TCB SPADs. The model couples the negative feedback mechanism with the impact ionization process and has the capability to simulate the key device characteristics even when the device is biased above its breakdown condition, where most commercial device simulators have failed to simulate. Lastly, this dissertation describes a frequency up-conversion scheme based on the hot-carrier radiative recombination in the multiplication region of InGaAs TCB SPADs. Preliminary experimental results suggest this new method could be potentially used for near infrared single photon imagers with high resolution.

Dissertation Abstracts International


Dissertation Abstracts International

Author:

language: en

Publisher:

Release Date: 2009


DOWNLOAD





Photon Counting


Photon Counting

Author: Nikolay Britun

language: en

Publisher: BoD – Books on Demand

Release Date: 2018-03-21


DOWNLOAD





Photon counting is a unified name for the techniques using single-photon detection for accumulative measurements of the light flux, normally occurring under extremely low-light conditions. Nowadays, this approach can be applied to the wide variety of the radiation wavelengths, starting from X-ray and deep ultraviolet transitions and ending with far-infrared part of the spectrum. As a special tribute to the photon counting, the studies of cosmic microwave background radiation in astronomy, the experiments with muon detection, and the large-scale fundamental experiments on the nature of matter should be noted. The book provides readers with an overview on the fundamentals and state-of-the-art applications of photon counting technique in the applied science and everyday life.