Ideals Varieties And Algorithms


Download Ideals Varieties And Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ideals Varieties And Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Ideals, Varieties, and Algorithms


Ideals, Varieties, and Algorithms

Author: David Cox

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





We wrote this book to introduce undergraduates to some interesting ideas in algebraic geometry and commutative algebra. Until recently, these topics involved a lot of abstract mathematics and were only taught in graduate school. But in the 1960's, Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations. Fueled by the development of computers fast enough to run these algorithms, the last two decades have seen a minor revolution in commutative algebra. The ability to compute efficiently with polynomial equations has made it possible to investigate complicated examples that would be impossible to do by hand, and has changed the practice of much research in algebraic geometry. This has also enhanced the importance of the subject for computer scientists and engineers, who have begun to use these techniques in a whole range of problems. It is our belief that the growing importance of these computational techniques warrants their introduction into the undergraduate (and graduate) mathematics curricu lum. Many undergraduates enjoy the concrete, almost nineteenth century, flavor that a computational emphasis brings to the subject. At the same time, one can do some substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory and the Nullstellensatz. The mathematical prerequisites of the book are modest: the students should have had a course in linear algebra and a course where they learned how to do proofs. Examples of the latter sort of course include discrete math and abstract algebra.

Using Algebraic Geometry


Using Algebraic Geometry

Author: David A. Cox

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Gr"obner bases and resultants. In order to do this, the authors provide an introduction to some algebraic objects and techniques which are more advanced than one typically encounters in a first course, but nonetheless of great utility. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Gr"obner bases. The book does not assume the reader is familiar with more advanced concepts such as modules.

Ideals, Varieties, and Algorithms


Ideals, Varieties, and Algorithms

Author: David A. Cox

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-08-28


DOWNLOAD





This book details the heart and soul of modern commutative and algebraic geometry. It covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: a significantly updated section on Maple; updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR; and presents a shorter proof of the Extension Theorem.