Hyper Heuristics Theory And Applications


Download Hyper Heuristics Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hyper Heuristics Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hyper-Heuristics: Theory and Applications


Hyper-Heuristics: Theory and Applications

Author: Nelishia Pillay

language: en

Publisher: Springer

Release Date: 2018-10-05


DOWNLOAD





This introduction to the field of hyper-heuristics presents the required foundations and tools and illustrates some of their applications. The authors organized the 13 chapters into three parts. The first, hyper-heuristic fundamentals and theory, provides an overview of selection constructive, selection perturbative, generation constructive and generation perturbative hyper-heuristics, and then a formal definition of hyper-heuristics. The chapters in the second part of the book examine applications of hyper-heuristics in vehicle routing, nurse rostering, packing and examination timetabling. The third part of the book presents advanced topics and then a summary of the field and future research directions. Finally the appendices offer details of the HyFlex framework and the EvoHyp toolkit, and then the definition, problem model and constraints for the most tested combinatorial optimization problems. The book will be of value to graduate students, researchers, and practitioners.

Handbook of Metaheuristics


Handbook of Metaheuristics

Author: Fred W. Glover

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-04-11


DOWNLOAD





Metaheuristics, in their original definition, are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. Over time, these methods have also come to include any procedures that employ strategies for overcoming the trap of local optimality in complex solution spaces, especially those procedures that utilize one or more neighborhood structures as a means of defining admissible moves to transition from one solution to another, or to build or destroy solutions in constructive and destructive processes. The degree to which neighborhoods are exploited varies according to the type of procedure. In the case of certain population-based procedures, such as genetic al- rithms, neighborhoods are implicitly (and somewhat restrictively) defined by reference to replacing components of one solution with those of another, by variously chosen rules of exchange popularly given the name of “crossover. ” In other population-based methods, based on the notion of path relinking, neighborhood structures are used in their full generality, including constructive and destructive neighborhoods as well as those for transitioning between (complete) solutions. Certain hybrids of classical evoluti- ary approaches, which link them with local search, also use neighborhood structures more fully, though apart from the combination process itself.

Metaheuristic Search Concepts


Metaheuristic Search Concepts

Author: Günther Zäpfel

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-03-10


DOWNLOAD





In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to “build” one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.