Metaheuristic Search Concepts


Download Metaheuristic Search Concepts PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Metaheuristic Search Concepts book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Metaheuristic Search Concepts


Metaheuristic Search Concepts

Author: Günther Zäpfel

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-03-10


DOWNLOAD





In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to “build” one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.

Metaheuristics:


Metaheuristics:

Author: Toshihide Ibaraki

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-05-06


DOWNLOAD





Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.

Metaheuristics


Metaheuristics

Author: El-Ghazali Talbi

language: en

Publisher: John Wiley & Sons

Release Date: 2009-05-27


DOWNLOAD





A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.