High Performance Discovery In Time Series

Download High Performance Discovery In Time Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Performance Discovery In Time Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Recent Advances in Time-Series Classification—Methodology and Applications

This book examines the impact of such constraints on elastic time-series similarity measures and provides guidance on selecting suitable measures. Time-series classification frequently relies on selecting an appropriate similarity or distance measure to compare time series effectively, often using dynamic programming techniques for more robust results. However, these techniques can be computationally demanding, which results in the usage of global constraints to reduce the search area in the dynamic programming matrix. While these constraints cut computation time significantly (by up to three orders of magnitude), they may also affect classification accuracy. Additionally, the importance of the nearest neighbor classifier (1NN) is emphasized for its strong performance in time-series classification, alongside the kNN classifier which offers stable results. This book further explores the weighted kNN classifier, which gives closer neighbors more influence, showing how it merges accuracy and stability for improved classification outcomes.
High Performance Computing

Author: Ponnuswamy Sadayappan
language: en
Publisher: Springer Nature
Release Date: 2020-06-15
This book constitutes the refereed proceedings of the 35th International Conference on High Performance Computing, ISC High Performance 2020, held in Frankfurt/Main, Germany, in June 2020.* The 27 revised full papers presented were carefully reviewed and selected from 87 submissions. The papers cover a broad range of topics such as architectures, networks & infrastructure; artificial intelligence and machine learning; data, storage & visualization; emerging technologies; HPC algorithms; HPC applications; performance modeling & measurement; programming models & systems software. *The conference was held virtually due to the COVID-19 pandemic. Chapters "Scalable Hierarchical Aggregation and Reduction Protocol (SHARP) Streaming-Aggregation Hardware Design and Evaluation", "Solving Acoustic Boundary Integral Equations Using High Performance Tile Low-Rank LU Factorization", "Scaling Genomics Data Processing with Memory-Driven Computing to Accelerate Computational Biology", "Footprint-Aware Power Capping for Hybrid Memory Based Systems", and "Pattern-Aware Staging for Hybrid Memory Systems" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
2020 International Conference on Data Processing Techniques and Applications for Cyber-Physical Systems

This book covers cutting-edge and advanced research on data processing techniques and applications for cyber-physical systems, gathering the proceedings of the International Conference on Data Processing Techniques and Applications for Cyber-Physical Systems (DPTA 2020), held in Laibin City, Guangxi Province, China, on December 11–12, 2020. It examines a wide range of topics, including distributed processing for sensor data in CPS networks; approximate reasoning and pattern recognition for CPS networks; data platforms for efficient integration with CPS networks; machine learning algorithms for CPS networks; and data security and privacy in CPS networks. Outlining promising future research directions, the book offers a valuable resource for students, researchers, and professionals alike, while also providing a useful reference guide for newcomers to the field.