High Order Finite Difference Approximations For Hyperbolic Problems

Download High Order Finite Difference Approximations For Hyperbolic Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get High Order Finite Difference Approximations For Hyperbolic Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
High-order finite difference approximations for hyperbolic problems

Author: Hannes Frenander
language: en
Publisher: Linköping University Electronic Press
Release Date: 2017-01-24
In this thesis, we use finite difference operators with the Summation-By-Partsproperty (SBP) and a weak boundary treatment, known as SimultaneousApproximation Terms (SAT), to construct high-order accurate numerical schemes.The SBP property and the SAT’s makes the schemes provably stable. The numerical procedure is general, and can be applied to most problems, but we focus on hyperbolic problems such as the shallow water, Euler and wave equations. For a well-posed problem and a stable numerical scheme, data must be available at the boundaries of the domain. However, there are many scenarios where additional information is available inside the computational domain. In termsof well-posedness and stability, the additional information is redundant, but it can still be used to improve the performance of the numerical scheme. As a first contribution, we introduce a procedure for implementing additional data using SAT’s; we call the procedure the Multiple Penalty Technique (MPT). A stable and accurate scheme augmented with the MPT remains stable and accurate. Moreover, the MPT introduces free parameters that can be used to increase the accuracy, construct absorbing boundary layers, increase the rate of convergence and control the error growth in time. To model infinite physical domains, one need transparent artificial boundary conditions, often referred to as Non-Reflecting Boundary Conditions (NRBC). In general, constructing and implementing such boundary conditions is a difficult task that often requires various approximations of the frequency and range of incident angles of the incoming waves. In the second contribution of this thesis,we show how to construct NRBC’s by using SBP operators in time. In the final contribution of this thesis, we investigate long time error bounds for the wave equation on second order form. Upper bounds for the spatial and temporal derivatives of the error can be obtained, but not for the actual error. The theoretical results indicate that the error grows linearly in time. However, the numerical experiments show that the error is in fact bounded, and consequently that the derived error bounds are probably suboptimal.
High Order Difference Methods for Time Dependent PDE

Author: Bertil Gustafsson
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-12-06
Many books have been written on ?nite difference methods (FDM), but there are good reasons to write still another one. The main reason is that even if higher order methods have been known for a long time, the analysis of stability, accuracy and effectiveness is missing to a large extent. For example, the de?nition of the formal high order accuracy is based on the assumption that the true solution is smooth, or expressed differently, that the grid is ?ne enough such that all variations in the solution are well resolved. In many applications, this assumption is not ful?lled, and then it is interesting to know if a high order method is still effective. Another problem that needs thorough analysis is the construction of boundary conditions such that both accuracy and stability is upheld. And ?nally, there has been quite a strongdevelopmentduringthe last years, inparticularwhenit comesto verygeneral and stable difference operators for application on initial–boundary value problems. The content of the book is not purely theoretical, neither is it a set of recipes for varioustypesof applications. The idea is to give an overviewof the basic theoryand constructionprinciplesfor differencemethodswithoutgoing into all details. For - ample, certain theorems are presented, but the proofs are in most cases left out. The explanation and application of the theory is illustrated by using simple model - amples.
Finite Difference Methods for Ordinary and Partial Differential Equations

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.