Hands On Artificial Intelligence For Search


Download Hands On Artificial Intelligence For Search PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hands On Artificial Intelligence For Search book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Artificial Intelligence for Search


Hands-On Artificial Intelligence for Search

Author: Devangini Patel

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-08-30


DOWNLOAD





Make your searches more responsive and smarter by applying Artificial Intelligence to it Key Features Enter the world of Artificial Intelligence with solid concepts and real-world use cases Make your applications intelligent using AI in your day-to-day apps and become a smart developer Design and implement artificial intelligence in searches Book Description With the emergence of big data and modern technologies, AI has acquired a lot of relevance in many domains. The increase in demand for automation has generated many applications for AI in fields such as robotics, predictive analytics, finance, and more. In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found for such problems. But these are not optimal in either space or time and efficient approaches in time and space will be explored. We will also understand how to formulate a problem, which involves looking at it and identifying its initial state, goal state, and the actions that are possible in each state. We also need to understand the data structures involved while implementing these search algorithms as they form the basis of search exploration. Finally, we will look into what a heuristic is as this decides the quality of one sub-solution over another and helps you decide which step to take. What you will learn Understand the instances where searches can be used Understand the algorithms that can be used to make decisions more intelligent Formulate a problem by specifying its initial state, goal state, and actions Translate the concepts of the selected search algorithm into code Compare how basic search algorithms will perform for the application Implement algorithmic programming using code examples Who this book is for This book is for developers who are keen to get started with Artificial Intelligence and develop practical AI-based applications. Those developers who want to upgrade their normal applications to smart and intelligent versions will find this book useful. A basic knowledge and understanding of Python are assumed.

Hands-On Artificial Intelligence for Beginners


Hands-On Artificial Intelligence for Beginners

Author: Patrick D. Smith

language: en

Publisher: Packt Publishing Ltd

Release Date: 2018-10-31


DOWNLOAD





Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key FeaturesEnter the world of AI with the help of solid concepts and real-world use casesExplore AI components to build real-world automated intelligenceBecome well versed with machine learning and deep learning conceptsBook Description Virtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learnUse TensorFlow packages to create AI systemsBuild feedforward, convolutional, and recurrent neural networksImplement generative models for text generationBuild reinforcement learning algorithms to play gamesAssemble RNNs, CNNs, and decoders to create an intelligent assistantUtilize RNNs to predict stock market behaviorCreate and scale training pipelines and deployment architectures for AI systemsWho this book is for This book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.

Hands-On Machine Learning with R


Hands-On Machine Learning with R

Author: Brad Boehmke

language: en

Publisher: CRC Press

Release Date: 2019-11-07


DOWNLOAD





Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.