Current Trends On Knowledge Based Systems


Download Current Trends On Knowledge Based Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Current Trends On Knowledge Based Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Current Trends on Knowledge-Based Systems


Current Trends on Knowledge-Based Systems

Author: Giner Alor-Hernández

language: en

Publisher: Springer

Release Date: 2017-03-13


DOWNLOAD





This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used in different domains. The book offers a valuable resource for PhD students, Master’s and undergraduate students of Information Technology (IT)-related degrees such as Computer Science, Information Systems and Electronic Engineering.

Current Trends in Knowledge Acquisition


Current Trends in Knowledge Acquisition

Author: Bob Wielinga

language: en

Publisher: IOS Press

Release Date: 1990


DOWNLOAD





Knowledge acquisition has become a major area of artificial intelligence and cognitive science research. The papers in this book show that the area of knowledge acquisition for knowledge-based systems is still a diverse field in which a large number of research topics are being addressed. However, several main themes run through the papers. First, the issues of integrating knowledge from different sources and K.A. tools is a salient topic in many papers. A second major topic in the papers is that of knowledge modelling. Research in knowledge-based systems emphasises the use of generic models of reasoning and its underlying knowledge. An important trend in the area of knowledge modelling aims at the formalisation of knowledge models. Where the field of knowledge acquisition was without tools and techniques years ago, now there is a rapidly growing body of techniques and tools. Apart from the integrated workbenches already mentioned above, several papers in this book present new tools. Although knowledge acquisition and machine learning have been considered as separate subfields of AI, there is a tendency for the two fields to come together. This publication combines machine learning techniques with more conventional knowledge elicitation techniques. A framework is presented in which reasoning, problem solving and learning together form a knowledge intensive system that can acquire knowledge from its own experience.

Knowledge-Based Systems


Knowledge-Based Systems

Author: Rajendra Akerkar

language: en

Publisher: Jones & Bartlett Learning

Release Date: 2010-08-30


DOWNLOAD





Knowledge Based Systems (KBS) are systems that use artificial intelligence techniques in the problem solving process. This text is designed to develop an appreciation of KBS and their architecture and to help users understand a broad variety of knowledge based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters are designed to be modular providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material being presented and to stimulate thought and discussion.