Handbook Of Texture Analysis

Download Handbook Of Texture Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Texture Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Texture Analysis

Texture analysis is one of the fundamental aspects of human vision by which we discriminate between surfaces and objects. In a similar manner, computer vision can take advantage of the cues provided by surface texture to distinguish and recognize objects. In computer vision, texture analysis may be used alone or in combination with other sensed features (e.g. color, shape, or motion) to perform the task of recognition. Either way, it is a feature of paramount importance and boasts a tremendous body of work in terms of both research and applications.Currently, the main approaches to texture analysis must be sought out through a variety of research papers. This collection of chapters brings together in one handy volume the major topics of importance, and categorizes the various techniques into comprehensible concepts. The methods covered will not only be relevant to those working in computer vision, but will also be of benefit to the computer graphics, psychophysics, and pattern recognition communities, academic or industrial.
Handbook of Texture Analysis

The major goals of texture research in computer vision are to understand, model, and process texture and, ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This volume presents important branches of texture analysis methods which find a proper application in AI-based medical image analysis. This book: Discusses first-order, second-order statistical methods, local binary pattern (LBP) methods, and filter bank-based methods Covers spatial frequency-based methods, Fourier analysis, Markov random fields, Gabor filters, and Hough transformation Describes advanced textural methods based on DL as well as BD and advanced applications of texture to medial image segmentation Is aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering This is an essential reference for those looking to advance their understanding in this applied and emergent field.