Handbook Of Research On Computer Vision And Image Processing In The Deep Learning Era

Download Handbook Of Research On Computer Vision And Image Processing In The Deep Learning Era PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Handbook Of Research On Computer Vision And Image Processing In The Deep Learning Era book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era

In recent decades, there has been an increasing interest in using machine learning and, in the last few years, deep learning methods combined with other vision and image processing techniques to create systems that solve vision problems in different fields. There is a need for academicians, developers, and industry-related researchers to present, share, and explore traditional and new areas of computer vision, machine learning, deep learning, and their combinations to solve problems. The Handbook of Research on Computer Vision and Image Processing in the Deep Learning Era is designed to serve researchers and developers by sharing original, innovative, and state-of-the-art algorithms and architectures for applications in the areas of computer vision, image processing, biometrics, virtual and augmented reality, and more. It integrates the knowledge of the growing international community of researchers working on the application of machine learning and deep learning methods in vision and robotics. Covering topics such as brain tumor detection, heart disease prediction, and medical image detection, this premier reference source is an exceptional resource for medical professionals, faculty and students of higher education, business leaders and managers, librarians, government officials, researchers, and academicians.
Handbook of Research on Artificial Intelligence Applications in Literary Works and Social Media

Artificial intelligence has been utilized in a diverse range of industries as more people and businesses discover its many uses and applications. A current field of study that requires more attention, as there is much opportunity for improvement, is the use of artificial intelligence within literary works and social media analysis. The Handbook of Research on Artificial Intelligence Applications in Literary Works and Social Media presents contemporary developments in the adoption of artificial intelligence in textual analysis of literary works and social media and introduces current approaches, techniques, and practices in data science that are implemented to scrap and analyze text data. This book initiates a new multidisciplinary field that is the combination of artificial intelligence, data science, social science, literature, and social media study. Covering key topics such as opinion mining, sentiment analysis, and machine learning, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.