Hamiltonian Methods In The Theory Of Solitons

Download Hamiltonian Methods In The Theory Of Solitons PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hamiltonian Methods In The Theory Of Solitons book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hamiltonian Methods in the Theory of Solitons

Author: Ludwig Faddeev
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-08-10
This book presents the foundations of the inverse scattering method and its applications to the theory of solitons in such a form as we understand it in Leningrad. The concept of solitonwas introduced by Kruskal and Zabusky in 1965. A soliton (a solitary wave) is a localized particle-like solution of a nonlinear equation which describes excitations of finite energy and exhibits several characteristic features: propagation does not destroy the profile of a solitary wave; the interaction of several solitary waves amounts to their elastic scat tering, so that their total number and shape are preserved. Occasionally, the concept of the soliton is treated in a more general sense as a localized solu tion of finite energy. At present this concept is widely spread due to its universality and the abundance of applications in the analysis of various processes in nonlinear media. The inverse scattering method which is the mathematical basis of soliton theory has developed into a powerful tool of mathematical physics for studying nonlinear partial differential equations, almost as vigoraus as the Fourier transform. The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiltonian formal ism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scat tering method in its most elegant form. Moreover, the Hamiltonian formal ism provides a link between classical and quantum mechanics.
Spectral Methods in Soliton Equations

Soliton theory as a method for solving some classes of nonlinear evolution equations (soliton equations) is one of the most actively developing topics in mathematical physics. This book presents some spectral theory methods for the investigation of soliton equations ad the inverse scattering problems related to these equations. The authors give the theory of expansions for the Sturm-Liouville operator and the Dirac operator. On this basis, the spectral theory of recursion operators generating Korteweg-de Vries type equations is presented and the Ablowitz-Kaup-Newell-Segur scheme, through which the inverse scattering method could be understood as a Fourier-type transformation, is considered. Following these ideas, the authors investigate some of the questions related to inverse spectral problems, i.e. uniqueness theorems, construction of explicit solutions and approximative methods for solving inverse scattering problems. A rigorous investigation of the stability of soliton solutions including solitary waves for equations which do not allow integration within inverse scattering method is also presented.
Soliton Equations and Hamiltonian Systems

The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.