Graphs Morphisms And Statistical Physics

Download Graphs Morphisms And Statistical Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphs Morphisms And Statistical Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Graphs, Morphisms and Statistical Physics

Author: Jaroslav Nešetřil
language: en
Publisher: American Mathematical Soc.
Release Date: 2004
Based on a March 2001 workshop, this collection explores connections between random graphs and percolation, between slow mixing and phase transition, and between graph morphisms and hard-constraint models. Topics of the 14 papers include efficient local search near phase transitions in combinatorial optimization, graph homomorphisms and long range action, recent results on parameterized H-colorings, the satisfiability of random k-Horn formulae, a discrete non-Pfaffian approach to the Ising problem, and chromatic numbers of products of tournaments. No indexes are provided. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
Graphs, Morphisms, and Statistical Physics

The intersection of combinatorics and statistical physics has experienced great activity in recent years. This flurry of activity has been fertilized by an exchange not only of techniques, but also of objectives. Computer scientists interested in approximation algorithms have helped statistical physicists and discrete mathematicians overcome language problems. They have found a wealth of common ground in probabilistic combinatorics. Close connections between percolation and random graphs, graph morphisms and hard-constraint models, and slow mixing and phase transition have led to new results a.
Computational Complexity and Statistical Physics

Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.