Graphs In Perturbation Theory


Download Graphs In Perturbation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Graphs In Perturbation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Graphs in Perturbation Theory


Graphs in Perturbation Theory

Author: Michael Borinsky

language: en

Publisher: Springer

Release Date: 2018-11-04


DOWNLOAD





This book is the first systematic study of graphical enumeration and the asymptotic algebraic structures in perturbative quantum field theory. Starting with an exposition of the Hopf algebra structure of generic graphs, it reviews and summarizes the existing literature. It then applies this Hopf algebraic structure to the combinatorics of graphical enumeration for the first time, and introduces a novel method of asymptotic analysis to answer asymptotic questions. This major breakthrough has combinatorial applications far beyond the analysis of graphical enumeration. The book also provides detailed examples for the asymptotics of renormalizable quantum field theories, which underlie the Standard Model of particle physics. A deeper analysis of such renormalizable field theories reveals their algebraic lattice structure. The pedagogical presentation allows readers to apply these new methods to other problems, making this thesis a future classic for the study of asymptotic problems in quantum fields, network theory and far beyond.

Graphs in Perturbation Theory


Graphs in Perturbation Theory

Author: Michael Borinsky

language: en

Publisher:

Release Date: 2018


DOWNLOAD





Modern Functional Quantum Field Theory: Summing Feynman Graphs


Modern Functional Quantum Field Theory: Summing Feynman Graphs

Author: Herbert Martin Fried

language: en

Publisher: World Scientific

Release Date: 2014-01-10


DOWNLOAD





These pages offer a simple, analytic, functional approach to non-perturbative QFT, using a frequently overlooked functional representation of Fradkin to explicitly calculate relevant portions of the Schwinger Generating Functional (GF). In QED, this corresponds to summing all Feynman graphs representing virtual photon exchange between charged particles. It is then possible to see, analytically, the cancellation of an infinite number of perturbative, UV logarithmic divergences, leading to an approximate but most reasonable statement of finite charge renormalization.A similar treatment of QCD, with the addition of a long-overlooked but simple rearrangement of the Schwinger GF which displays Manifest Gauge Invariance, is then able to produce a simple, analytic derivation of quark-binding potentials without any approximation of infinite quark masses. A crucial improvement of previous QCD theory takes into account the experimental fact that asymptotic quarks are always found in bound states; and therefore that their transverse coordinates can never be measured, nor specified, exactly. And this change of formalism permits a clear and simple realization of true quark binding, into mesons and nucleons. An extension into the QCD binding of two nucleons into an effective deuteron presents a simple, analytic derivation of nuclear forces.Finally, a new QED-based solution of Vacuum Energy is displayed as a possible candidate for Dark Energy. An obvious generalization to include Inflation, which automatically suggests a model for Dark Matter, is immediately possible; and one more obvious generalization produces an understanding of the origin of the Big Bang, and of the Birth (and Death) of a Universe. If nothing else, this illustrates the Power and the Reach of Quantum Field Theory.