Geostatistical Simulations

Download Geostatistical Simulations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geostatistical Simulations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geostatistical Simulations

Author: M. Armstrong
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
When this two-day meeting was proposed, it was certainly not conceived as a celebration, much less as a party. However, on reflection, this might have been a wholly appropriate gesture because geostatistical simulation came of age this year: it is now 21 years since it was first proposed and implemented in the form of the turning bands method. The impetus for the original development was the mining industry, principally the problems encountered in mine planning and design based on smoothed estimates which did not reflect the degree of variability and detail present in the real, mined values. The sustained period of development over recent years has been driven by hydrocarbon applications. In addition to the original turning bands method there are now at least six other established methods of geostatistical simulation. Having reached adulthood, it is entirely appropriate that geostatistical simulation should now be subjected to an intense period of reflection and assessment. That we have now entered this period was evident in many of the papers and much of the discussion at the Fontainebleau meeting. Many questions were clearly articulated for the first time and, although many ofthem were not unambiguously answered, their presentation at the meeting and publication in this book will generate confirmatory studies and further research.
Geostatistical Simulation

Author: Christian Lantuejoul
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
1. 1 Simulation versus estimation The following problem was raised by Alfaro (1979). A submarine cable has to be laid across the straits of Gibraltar. How can its length be predicted if the depth of the sea floor has been measured sparsely along its trajectory? Fig. 1. 1. Part of the actual trajectory and sample data points An exact determination of the length requires knowledge of the depth at each point of the trajectory. But these are mostly unknown. In a geostatistical set ting, they are considered as random and can be estimated by linear regression starting from the available data points. This suggests estimating the actual length as the length of the estimated trajectory. The results turn out to be disappointing. The length of the trajectory is seriously underestimated (see Figure 1. 2). Clearly, the estimated trajectory is much smoother than the actual one. Fig. 1. 2. Part of the actual trajectory and its estimate from linear regression. In this particular example, the estimated trajectory is piecewise linear because the linear regression has been carried out using an exponential covariance function 2 1. Introduction What is really questionable in this procedure is not the construction of an estimator for the length starting from the depth estimator, but the depth estimator itself. Linear regression estimation requires only the mean and the covariance function. But the covariance function does not tell us much about the length of the trajectories. Figure 1.
Spatial and Spatio-Temporal Geostatistical Modeling and Kriging

Author: José-María Montero
language: en
Publisher: John Wiley & Sons
Release Date: 2015-08-18
Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples