Geometric Mechanics Part Ii Rotating Translating And Rolling 2nd Edition

Download Geometric Mechanics Part Ii Rotating Translating And Rolling 2nd Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Geometric Mechanics Part Ii Rotating Translating And Rolling 2nd Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Geometric Mechanics - Part Ii: Rotating, Translating And Rolling (2nd Edition)

See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study./a
Dynamical Systems and Geometric Mechanics

Author: Jared Maruskin
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2018-08-21
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
Tensor Analysis

Author: Heinz Schade
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2018-10-08
Tensor calculus is a prerequisite for many tasks in physics and engineering. This book introduces the symbolic and the index notation side by side and offers easy access to techniques in the field by focusing on algorithms in index notation. It explains the required algebraic tools and contains numerous exercises with answers, making it suitable for self study for students and researchers in areas such as solid mechanics, fluid mechanics, and electrodynamics. Contents Algebraic Tools Tensor Analysis in Symbolic Notation and in Cartesian Coordinates Algebra of Second Order Tensors Tensor Analysis in Curvilinear Coordinates Representation of Tensor Functions Appendices: Solutions to the Problems; Cylindrical Coordinates and Spherical Coordinates