Generatingfunctionology 3rd Edition Pdf


Download Generatingfunctionology 3rd Edition Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Generatingfunctionology 3rd Edition Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

generatingfunctionology


generatingfunctionology

Author: Herbert S. Wilf

language: en

Publisher: CRC Press

Release Date: 2005-12-20


DOWNLOAD





Generating functions, one of the most important tools in enumerative combinatorics, are a bridge between discrete mathematics and continuous analysis. Generating functions have numerous applications in mathematics, especially in - Combinatorics - Probability Theory - Statistics - Theory of Markov Chains - Number Theory One of the most important and relevant recent applications of combinatorics lies in the development of Internet search engines whose incredible capabilities dazzle even the mathematically trained user.

Scalar, Vector, and Matrix Mathematics


Scalar, Vector, and Matrix Mathematics

Author: Dennis S. Bernstein

language: en

Publisher: Princeton University Press

Release Date: 2018-02-27


DOWNLOAD





The essential reference book on matrices—now fully updated and expanded, with new material on scalar and vector mathematics Since its initial publication, this book has become the essential reference for users of matrices in all branches of engineering, science, and applied mathematics. In this revised and expanded edition, Dennis Bernstein combines extensive material on scalar and vector mathematics with the latest results in matrix theory to make this the most comprehensive, current, and easy-to-use book on the subject. Each chapter describes relevant theoretical background followed by specialized results. Hundreds of identities, inequalities, and facts are stated clearly and rigorously, with cross-references, citations to the literature, and helpful comments. Beginning with preliminaries on sets, logic, relations, and functions, this unique compendium covers all the major topics in matrix theory, such as transformations and decompositions, polynomial matrices, generalized inverses, and norms. Additional topics include graphs, groups, convex functions, polynomials, and linear systems. The book also features a wealth of new material on scalar inequalities, geometry, combinatorics, series, integrals, and more. Now more comprehensive than ever, Scalar, Vector, and Matrix Mathematics includes a detailed list of symbols, a summary of notation and conventions, an extensive bibliography and author index with page references, and an exhaustive subject index. Fully updated and expanded with new material on scalar and vector mathematics Covers the latest results in matrix theory Provides a list of symbols and a summary of conventions for easy and precise use Includes an extensive bibliography with back-referencing plus an author index

Algebraic Geometry for Coding Theory and Cryptography


Algebraic Geometry for Coding Theory and Cryptography

Author: Everett W. Howe

language: en

Publisher: Springer

Release Date: 2017-11-15


DOWNLOAD





Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.