Gaussian Process Random Effects

Download Gaussian Process Random Effects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Gaussian Process Random Effects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Gaussian Processes for Machine Learning

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
First Hitting Time Regression Models

Author: Chrysseis Caroni
language: en
Publisher: John Wiley & Sons
Release Date: 2017-08-07
This book aims to promote regression methods for analyzing lifetime (or time-to-event) data that are based on a representation of the underlying process, and are therefore likely to offer greater scientific insight compared to purely empirical methods. In contrast to the rich statistical literature, the regression methods actually employed in lifetime data analysis are limited, particularly in the biomedical field where D. R. Cox’s famous semi-parametric proportional hazards model predominates. Practitioners should become familiar with more flexible models. The first hitting time regression models (or threshold regression) presented here represent observed events as the outcome of an underlying stochastic process. One example is death occurring when the patient’s health status falls to zero, but the idea has wide applicability – in biology, engineering, banking and finance, and elsewhere. The central topic is the model based on an underlying Wiener process, leading to lifetimes following the inverse Gaussian distribution. Introducing time-varying covariates and many other extensions are considered. Various applications are presented in detail.
Statistical Modeling for Degradation Data

This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.