Functional Analysis And Numerical Mathematics


Download Functional Analysis And Numerical Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Functional Analysis And Numerical Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Functional Analysis and Numerical Mathematics


Functional Analysis and Numerical Mathematics

Author: Lothar Collatz

language: en

Publisher: Academic Press

Release Date: 2014-05-12


DOWNLOAD





Functional Analysis and Numerical Mathematics focuses on the structural changes which numerical analysis has undergone, including iterative methods, vectors, integral equations, matrices, and boundary value problems. The publication first examines the foundations of functional analysis and applications, including various types of spaces, convergence and completeness, operators in Hilbert spaces, vector and matrix norms, eigenvalue problems, and operators in pseudometric and other special spaces. The text then elaborates on iterative methods. Topics include the fixed-point theorem for a general iterative method in pseudometric spaces; special cases of the fixed-point theorem and change of operator; iterative methods for differential and integral equations; and systems of equations and difference methods. The manuscript takes a look at monotonicity, inequalities, and other topics, including monotone operators, applications of Schauder's theorem, matrices and boundary value problems of monotone kind, discrete Chebyshev approximation and exchange methods, and approximation of functions. The publication is a valuable source of data for mathematicians and researchers interested in functional analysis and numerical mathematics.

An Introduction to Functional Analysis in Computational Mathematics


An Introduction to Functional Analysis in Computational Mathematics

Author: V.I. Lebedev

language: en

Publisher: Springer Science & Business Media

Release Date: 1996-12-01


DOWNLOAD





The book contains the methods and bases of functional analysis that are directly adjacent to the problems of numerical mathematics and its applications; they are what one needs for the understand ing from a general viewpoint of ideas and methods of computational mathematics and of optimization problems for numerical algorithms. Functional analysis in mathematics is now just the small visible part of the iceberg. Its relief and summit were formed under the influence of this author's personal experience and tastes. This edition in English contains some additions and changes as compared to the second edition in Russian; discovered errors and misprints had been corrected again here; to the author's distress, they jump incomprehensibly from one edition to another as fleas. The list of literature is far from being complete; just a number of textbooks and monographs published in Russian have been included. The author is grateful to S. Gerasimova for her help and patience in the complex process of typing the mathematical manuscript while the author corrected, rearranged, supplemented, simplified, general ized, and improved as it seemed to him the book's contents. The author thanks G. Kontarev for the difficult job of translation and V. Klyachin for the excellent figures.

A First Look at Numerical Functional Analysis


A First Look at Numerical Functional Analysis

Author: W. W. Sawyer

language: en

Publisher: Courier Dover Publications

Release Date: 2010-12-22


DOWNLOAD





Functional analysis arose from traditional topics of calculus and integral and differential equations. This accessible text by an internationally renowned teacher and author starts with problems in numerical analysis and shows how they lead naturally to the concepts of functional analysis. Suitable for advanced undergraduates and graduate students, this book provides coherent explanations for complex concepts. Topics include Banach and Hilbert spaces, contraction mappings and other criteria for convergence, differentiation and integration in Banach spaces, the Kantorovich test for convergence of an iteration, and Rall's ideas of polynomial and quadratic operators. Numerous examples appear throughout the text.