From Hodge Theory To Integrability And Tqft

Download From Hodge Theory To Integrability And Tqft PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Hodge Theory To Integrability And Tqft book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
From Hodge Theory to Integrability and TQFT

"Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.
Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

Author: Sergey Novikov
language: en
Publisher: American Mathematical Soc.
Release Date: 2021-04-12
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Mixed Twistor D-modules

We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular.