Frame Theory In Data Science


Download Frame Theory In Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Frame Theory In Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Frame Theory in Data Science


Frame Theory in Data Science

Author: Zhihua Zhang

language: en

Publisher: Springer Nature

Release Date: 2024-04-10


DOWNLOAD





This book establishes brand-new frame theory and technical implementation in data science, with a special focus on spatial-scale feature extraction, network dynamics, object-oriented analysis, data-driven environmental prediction, and climate diagnosis. Given that data science is unanimously recognized as a core driver for achieving Sustainable Development Goals of the United Nations, these frame techniques bring fundamental changes to multi-channel data mining systems and support the development of digital Earth platforms. This book integrates the authors' frame research in the past twenty years and provides cutting-edge techniques and depth for scientists, professionals, and graduate students in data science, applied mathematics, environmental science, and geoscience.

Finite Frames


Finite Frames

Author: Peter G. Casazza

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-09-14


DOWNLOAD





Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.

Frame Theory in Data Science


Frame Theory in Data Science

Author: Zhihua Zhang

language: en

Publisher: Springer

Release Date: 2024-03-03


DOWNLOAD





This book establishes brand-new frame theory and technical implementation in data science, with a special focus on spatial-scale feature extraction, network dynamics, object-oriented analysis, data-driven environmental prediction, and climate diagnosis. Given that data science is unanimously recognized as a core driver for achieving Sustainable Development Goals of the United Nations, these frame techniques bring fundamental changes to multi-channel data mining systems and support the development of digital Earth platforms. This book integrates the authors' frame research in the past twenty years and provides cutting-edge techniques and depth for scientists, professionals, and graduate students in data science, applied mathematics, environmental science, and geoscience.