Fractal Geometry And Dynamical Systems In Pure And Applied Mathematics Ii


Download Fractal Geometry And Dynamical Systems In Pure And Applied Mathematics Ii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fractal Geometry And Dynamical Systems In Pure And Applied Mathematics Ii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II


Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II

Author: David Carfi

language: en

Publisher: American Mathematical Soc.

Release Date: 2013-10-24


DOWNLOAD





This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics


Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Author: David Carfi

language: en

Publisher: American Mathematical Soc.

Release Date: 2013-10-22


DOWNLOAD





This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.

An Invitation to Fractal Geometry


An Invitation to Fractal Geometry

Author: Michel L. Lapidus

language: en

Publisher: American Mathematical Society

Release Date: 2024-12-30


DOWNLOAD





This book offers a comprehensive exploration of fractal dimensions, self-similarity, and fractal curves. Aimed at undergraduate and graduate students, postdocs, mathematicians, and scientists across disciplines, this text requires minimal prerequisites beyond a solid foundation in undergraduate mathematics. While fractal geometry may seem esoteric, this book demystifies it by providing a thorough introduction to its mathematical underpinnings and applications. Complete proofs are provided for most of the key results, and exercises of different levels of difficulty are proposed throughout the book. Key topics covered include the Hausdorff metric, Hausdorff measure, and fractal dimensions such as Hausdorff and Minkowski dimensions. The text meticulously constructs and analyzes Hausdorff measure, offering readers a deep understanding of its properties. Through emblematic examples like the Cantor set, the Sierpinski gasket, the Koch snowflake curve, and the Weierstrass curve, readers are introduced to self-similar sets and their construction via the iteration of contraction mappings. The book also sets the stage for the advanced theory of complex dimensions and fractal drums by gently introducing it via a variety of classical examples, including well-known fractal curves. By intertwining historical context with rigorous mathematical exposition, this book serves as both a stand-alone resource and a gateway to deeper explorations in fractal geometry.