An Invitation To Fractal Geometry


Download An Invitation To Fractal Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Invitation To Fractal Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Invitation to Fractal Geometry


An Invitation to Fractal Geometry

Author: Michel L. Lapidus

language: en

Publisher: American Mathematical Society

Release Date: 2024-12-31


DOWNLOAD





This book offers a comprehensive exploration of fractal dimensions, self-similarity, and fractal curves. Aimed at undergraduate and graduate students, postdocs, mathematicians, and scientists across disciplines, this text requires minimal prerequisites beyond a solid foundation in undergraduate mathematics. While fractal geometry may seem esoteric, this book demystifies it by providing a thorough introduction to its mathematical underpinnings and applications. Complete proofs are provided for most of the key results, and exercises of different levels of difficulty are proposed throughout the book. Key topics covered include the Hausdorff metric, Hausdorff measure, and fractal dimensions such as Hausdorff and Minkowski dimensions. The text meticulously constructs and analyzes Hausdorff measure, offering readers a deep understanding of its properties. Through emblematic examples like the Cantor set, the Sierpinski gasket, the Koch snowflake curve, and the Weierstrass curve, readers are introduced to self-similar sets and their construction via the iteration of contraction mappings. The book also sets the stage for the advanced theory of complex dimensions and fractal drums by gently introducing it via a variety of classical examples, including well-known fractal curves. By intertwining historical context with rigorous mathematical exposition, this book serves as both a stand-alone resource and a gateway to deeper explorations in fractal geometry.

Ergodic Theory and Fractal Geometry


Ergodic Theory and Fractal Geometry

Author: Hillel Furstenberg

language: en

Publisher: American Mathematical Society

Release Date: 2014-08-08


DOWNLOAD





Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.

Lectures on Fractal Geometry and Dynamical Systems


Lectures on Fractal Geometry and Dynamical Systems

Author: Ya. B. Pesin

language: en

Publisher: American Mathematical Soc.

Release Date: 2009


DOWNLOAD





Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.