Fog Computing Meaning

Download Fog Computing Meaning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fog Computing Meaning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fog Computing

Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.
Fog Data Analytics for IoT Applications

This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDA in IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.
Fog-Enabled Intelligent IoT Systems

This book first provides a comprehensive review of state-of-the-art IoT technologies and applications in different industrial sectors and public services. The authors give in-depth analyses of fog computing architecture and key technologies that fulfill the challenging requirements of enabling computing services anywhere along the cloud-to-thing continuum. Further, in order to make IoT systems more intelligent and more efficient, a fog-enabled service architecture is proposed to address the latency requirements, bandwidth limitations, and computing power issues in realistic cross-domain application scenarios with limited priori domain knowledge, i.e. physical laws, system statuses, operation principles and execution rules. Based on this fog-enabled architecture, a series of data-driven self-learning applications in different industrial sectors and public services are investigated and discussed, such as robot SLAM and formation control, wireless network self-optimization, intelligent transportation system, smart home and user behavior recognition. Finally, the advantages and future directions of fog-enabled intelligent IoT systems are summarized. Provides a comprehensive review of state-of-the-art IoT technologies and applications in different industrial sectors and public services Presents a fog-enabled service architecture with detailed technical approaches for realistic cross-domain application scenarios with limited prior domain knowledge Outlines a series of data-driven self-learning applications (with new algorithms) in different industrial sectors and public services