Interference Modeling And Performance Analysis Of 5g Mmwave Networks

Download Interference Modeling And Performance Analysis Of 5g Mmwave Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Interference Modeling And Performance Analysis Of 5g Mmwave Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Interference Modeling and Performance Analysis of 5G MmWave Networks

Triggered by the popularity of smart devices, wireless traffic volume and device connectivity have been growing exponentially during recent years. The next generation of wireless networks, i.e., 5G, is a promising solution to satisfy the increasing data demand through combination of key enabling technologies such as deployment of a high density of access points (APs), referred to as ultra-densification, and utilization of a large amount of bandwidth in millimeter wave (mmWave) bands. However, due to unfavorable propagation characteristics, this portion of spectrum has been under-utilized. As a solution, large antenna arrays that coherently direct the beams will help overcome the hostile characteristics of mmWave signals. Building networks of directional antennas has given rise to many challenges in wireless communication design. One of the main challenges is how to incorporate 5G technology into current networks and design uniform structures that bring about higher network performance and quality of service. In addition, the other factor that can be severely impacted is interference behavior. This is basically due to the fact that, narrow beams are highly vulnerable to obstacles in the environment. Motivated by these factors, the present dissertation addresses some key challenges associated with the utilization of mmWave signals. As a first step towards this objective, we first propose a framework of how 5G mmWave access points can be integrated into the current wireless structures and offer higher data rates. The related resource sharing problem has been also proposed and solved, within such a framework. Secondly, to better understand and quantify the interference behavior, we propose interference models for mmWave networks with directional beams for both large scale and finite-sized network dimension. The interference model is based on our proposed blockage model which captures the average number of obstacles that cause a complete link blockage, given a specific signal beamwidth. The main insight from our analysis shows that considering the effect of blockages leads to a different interference profile. Furthermore, we investigate how to model interference considering not only physical layer specifications but also upper layers constraints. In fact, upper network layers, such as medium access control (MAC) protocol controls the number of terminals transmitting simultaneously and how resources are shared among them, which in turn impacts the interference power level. An interesting result from this analysis is that, from the receiving terminal standpoint, even in mmWave networks with directional signals and high attenuation effects, we still need to maintain some sort of sensing where all terminals are not allowed to transmit their packets, simultaneously. The level of such sensing depends on the terminal density. Lastly, we provide a framework to detect the network regime and its relation to various key deployment parameters, leveraging the proposed interference and blockage models. Such regime detection is important from a network management and design perspective. Based on our finding, mmWave networks can exhibit either an interference-limited regime or a noise-limited regime, depending on various factors such as access point density, blockage density, signal beamwidth, etc.
mmWave Massive MIMO

mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. - Contains tutorials on the basics of mmWave and Massive MIMO - Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective - Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE - Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design - Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation
Innovations in Electrical and Electronics Engineering

This book is a collection of selected research papers presented at the International Conference on Innovations in Electrical and Electronics Engineering (ICIEEE 2019), which was organized by the Guru Nanak Institutions, Ibrahimpatnam, Hyderabad, Telangana, India, on July 26–27, 2019. The book highlights the latest developments in electrical and electronics engineering, especially in the areas of power systems, power electronics, control systems, electrical machinery, and renewable energy. The solutions discussed here will encourage and inspire researchers, industry professionals, and policymakers to put these methods into practice.