Exact Exponential Algorithms

Download Exact Exponential Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exact Exponential Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Exact Exponential Algorithms

Author: Fedor V. Fomin
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-10-26
For a long time computer scientists have distinguished between fast and slow algo rithms. Fast (or good) algorithms are the algorithms that run in polynomial time, which means that the number of steps required for the algorithm to solve a problem is bounded by some polynomial in the length of the input. All other algorithms are slow (or bad). The running time of slow algorithms is usually exponential. This book is about bad algorithms. There are several reasons why we are interested in exponential time algorithms. Most of us believe that there are many natural problems which cannot be solved by polynomial time algorithms. The most famous and oldest family of hard problems is the family of NP complete problems. Most likely there are no polynomial time al gorithms solving these hard problems and in the worst case scenario the exponential running time is unavoidable. Every combinatorial problem is solvable in ?nite time by enumerating all possi ble solutions, i. e. by brute force search. But is brute force search always unavoid able? De?nitely not. Already in the nineteen sixties and seventies it was known that some NP complete problems can be solved signi?cantly faster than by brute force search. Three classic examples are the following algorithms for the TRAVELLING SALESMAN problem, MAXIMUM INDEPENDENT SET, and COLORING.
Parameterized Algorithms

This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms

Author: SIAM Activity Group on Discrete Mathematics
language: en
Publisher: SIAM
Release Date: 2006-01-01
Symposium held in Miami, Florida, January 22–24, 2006.This symposium is jointly sponsored by the ACM Special Interest Group on Algorithms and Computation Theory and the SIAM Activity Group on Discrete Mathematics.Contents Preface; Acknowledgments; Session 1A: Confronting Hardness Using a Hybrid Approach, Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo; A New Approach to Proving Upper Bounds for MAX-2-SAT, Arist Kojevnikov and Alexander S. Kulikov, Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm, Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch; A Polynomial Algorithm to Find an Independent Set of Maximum Weight in a Fork-Free Graph, Vadim V. Lozin and Martin Milanic; The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity, Wolfgang W. Bein, Mordecai J. Golin, Larry L. Larmore, and Yan Zhang; Session 1B: Local Versus Global Properties of Metric Spaces, Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala; Directed Metrics and Directed Graph Partitioning Problems, Moses Charikar, Konstantin Makarychev, and Yury Makarychev; Improved Embeddings of Graph Metrics into Random Trees, Kedar Dhamdhere, Anupam Gupta, and Harald Räcke; Small Hop-diameter Sparse Spanners for Doubling Metrics, T-H. Hubert Chan and Anupam Gupta; Metric Cotype, Manor Mendel and Assaf Naor; Session 1C: On Nash Equilibria for a Network Creation Game, Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty; Approximating Unique Games, Anupam Gupta and Kunal Talwar; Computing Sequential Equilibria for Two-Player Games, Peter Bro Miltersen and Troels Bjerre Sørensen; A Deterministic Subexponential Algorithm for Solving Parity Games, Marcin Jurdzinski, Mike Paterson, and Uri Zwick; Finding Nucleolus of Flow Game, Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun, Session 2: Invited Plenary Abstract: Predicting the “Unpredictable”, Rakesh V. Vohra, Northwestern University; Session 3A: A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem, Sven Koenig, Apurva Mudgal, and Craig Tovey; An Asymptotic Approximation Algorithm for 3D-Strip Packing, Klaus Jansen and Roberto Solis-Oba; Facility Location with Hierarchical Facility Costs, Zoya Svitkina and Éva Tardos; Combination Can Be Hard: Approximability of the Unique Coverage Problem, Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R. Salavatipour; Computing Steiner Minimum Trees in Hamming Metric, Ernst Althaus and Rouven Naujoks; Session 3B: Robust Shape Fitting via Peeling and Grating Coresets, Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu; Tightening Non-Simple Paths and Cycles on Surfaces, Éric Colin de Verdière and Jeff Erickson; Anisotropic Surface Meshing, Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger; Simultaneous Diagonal Flips in Plane Triangulations, Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood; Morphing Orthogonal Planar Graph Drawings, Anna Lubiw, Mark Petrick, and Michael Spriggs; Session 3C: Overhang, Mike Paterson and Uri Zwick; On the Capacity of Information Networks, Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman; Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding, Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Patrascu; Self-Improving Algorithms, Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu; Cake Cutting Really is Not a Piece of Cake, Jeff Edmonds and Kirk Pruhs; Session 4A: Testing Triangle-Freeness in General Graphs, Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron; Constraint Solving via Fractional Edge Covers, Martin Grohe and Dániel Marx; Testing Graph Isomorphism, Eldar Fischer and Arie Matsliah; Efficient Construction of Unit Circular-Arc Models, Min Chih Lin and Jayme L. Szwarcfiter, On The Chromatic Number of Some Geometric Hypergraphs, Shakhar Smorodinsky; Session 4B: A Robust Maximum Completion Time Measure for Scheduling, Moses Charikar and Samir Khuller; Extra Unit-Speed Machines are Almost as Powerful as Speedy Machines for Competitive Flow Time Scheduling, Ho-Leung Chan, Tak-Wah Lam, and Kin-Shing Liu; Improved Approximation Algorithms for Broadcast Scheduling, Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko; Distributed Selfish Load Balancing, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul Goldberg, Zengjian Hu, and Russell Martin; Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic Power Management, Philippe Baptiste; Session 4C: Rank/Select Operations on Large Alphabets: A Tool for Text Indexing, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao; O(log log n)-Competitive Dynamic Binary Search Trees, Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator; The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure, Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun; Design of Data Structures for Mergeable Trees, Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck; Implicit Dictionaries with O(1) Modifications per Update and Fast Search, Gianni Franceschini and J. Ian Munro; Session 5A: Sampling Binary Contingency Tables with a Greedy Start, Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda; Asymmetric Balanced Allocation with Simple Hash Functions, Philipp Woelfel; Balanced Allocation on Graphs, Krishnaram Kenthapadi and Rina Panigrahy; Superiority and Complexity of the Spaced Seeds, Ming Li, Bin Ma, and Louxin Zhang; Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time, Michael Krivelevich and Dan Vilenchik; Session 5B: Analysis of Incomplete Data and an Intrinsic-Dimension Helly Theorem, Jie Gao, Michael Langberg, and Leonard J. Schulman; Finding Large Sticks and Potatoes in Polygons, Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon; Randomized Incremental Construction of Three-Dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting, Haim Kaplan and Micha Sharir; Vertical Ray Shooting and Computing Depth Orders for Fat Objects, Mark de Berg and Chris Gray; On the Number of Plane Graphs, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado, and Hannes Krasser; Session 5C: All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time, Timothy M. Chan; An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph, Glencora Borradaile and Philip Klein; A Simple GAP-Canceling Algorithm for the Generalized Maximum Flow Problem, Mateo Restrepo and David P. Williamson; Four Point Conditions and Exponential Neighborhoods for Symmetric TSP, Vladimir Deineko, Bettina Klinz, and Gerhard J. Woeginger; Upper Degree-Constrained Partial Orientations, Harold N. Gabow; Session 7A: On the Tandem Duplication-Random Loss Model of Genome Rearrangement, Kamalika Chaudhuri, Kevin Chen, Radu Mihaescu, and Satish Rao; Reducing Tile Complexity for Self-Assembly Through Temperature Programming, Ming-Yang Kao and Robert Schweller; Cache-Oblivious String Dictionaries, Gerth Stølting Brodal and Rolf Fagerberg; Cache-Oblivious Dynamic Programming, Rezaul Alam Chowdhury and Vijaya Ramachandran; A Computational Study of External-Memory BFS Algorithms, Deepak Ajwani, Roman Dementiev, and Ulrich Meyer; Session 7B: Tight Approximation Algorithms for Maximum General Assignment Problems, Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko; Approximating the k-Multicut Problem, Daniel Golovin, Viswanath Nagarajan, and Mohit Singh; The Prize-Collecting Generalized Steiner Tree Problem Via A New Approach Of Primal-Dual Schema, Mohammad Taghi Hajiaghayi and Kamal Jain; 8/7-Approximation Algorithm for (1,2)-TSP, Piotr Berman and Marek Karpinski; Improved Lower and Upper Bounds for Universal TSP in Planar Metrics, Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton; Session 7C: Leontief Economies Encode NonZero Sum Two-Player Games, B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye; Bottleneck Links, Variable Demand, and the Tragedy of the Commons, Richard Cole, Yevgeniy Dodis, and Tim Roughgarden; The Complexity of Quantitative Concurrent Parity Games, Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger; Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints, Kamal Jain and Kasturi Varadarajan; Session 8A: Approximation Algorithms for Wavelet Transform Coding of Data Streams, Sudipto Guha and Boulos Harb; Simpler Algorithm for Estimating Frequency Moments of Data Streams, Lakshimath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha; Trading Off Space for Passes in Graph Streaming Problems, Camil Demetrescu, Irene Finocchi, and Andrea Ribichini; Maintaining Significant Stream Statistics over Sliding Windows, L.K. Lee and H.F. Ting; Streaming and Sublinear Approximation of Entropy and Information Distances, Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian; Session 8B: FPTAS for Mixed-Integer Polynomial Optimization with a Fixed Number of Variables, J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel; Linear Programming and Unique Sink Orientations, Bernd Gärtner and Ingo Schurr; Generating All Vertices of a Polyhedron is Hard, Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich; A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs, Anthony Man-Cho So and Yinyu Ye; Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments, Don Coppersmith, Lisa Fleischer, and Atri Rudra; Session 8C: Weighted Isotonic Regression under L1 Norm, Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang; Oblivious String Embeddings and Edit Distance Approximations, Tugkan Batu, Funda Ergun, and Cenk Sahinalp0898716012\\This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.