Parameterized Algorithms


Download Parameterized Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Parameterized Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Parameterized Algorithms


Parameterized Algorithms

Author: Marek Cygan

language: en

Publisher: Springer

Release Date: 2016-10-29


DOWNLOAD





This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.

Parameterized Algorithms


Parameterized Algorithms

Author: Marek Cygan

language: en

Publisher: Springer

Release Date: 2015-07-20


DOWNLOAD





This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.

Parameterized Complexity Theory


Parameterized Complexity Theory

Author: J. Flum

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-05-01


DOWNLOAD





Parameterized complexity theory is a recent branch of computational complexity theory that provides a framework for a refined analysis of hard algorithmic problems. The central notion of the theory, fixed-parameter tractability, has led to the development of various new algorithmic techniques and a whole new theory of intractability. This book is a state-of-the-art introduction to both algorithmic techniques for fixed-parameter tractability and the structural theory of parameterized complexity classes, and it presents detailed proofs of recent advanced results that have not appeared in book form before. Several chapters are each devoted to intractability, algorithmic techniques for designing fixed-parameter tractable algorithms, and bounded fixed-parameter tractability and subexponential time complexity. The treatment is comprehensive, and the reader is supported with exercises, notes, a detailed index, and some background on complexity theory and logic. The book will be of interest to computer scientists, mathematicians and graduate students engaged with algorithms and problem complexity.