Environmental Data Analysis With Matlab Or Python


Download Environmental Data Analysis With Matlab Or Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Environmental Data Analysis With Matlab Or Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Environmental Data Analysis with MatLab or Python


Environmental Data Analysis with MatLab or Python

Author: William Menke

language: en

Publisher: Academic Press

Release Date: 2022-08-14


DOWNLOAD





Environmental Data Analysis with MATLAB, Third Edition, is a new edition that expands fundamentally on the original with an expanded tutorial approach, more clear organization, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. The work teaches the basics of the underlying theory of data analysis and then reinforces that knowledge with carefully chosen, realistic scenarios, including case studies in each chapter. The new edition is expanded to include applications to Python, an open source software environment. Significant content in Environmental Data Analysis with MATLAB, Third Edition is devoted to teaching how the programs can be effectively used in an environmental data analysis setting. This new edition offers chapters that can both be used as self-contained resources or as a step-by-step guide for students, and is supplemented with data and scripts to demonstrate relevant use cases. - Provides a clear learning path for researchers and students using data analysis techniques which build upon one another, choosing the right order of presentation to substantially aid the reader in learning material - Includes crib sheets to summarize the most important data analysis techniques, results, procedures, and formulas and worked examples to demonstrate techniques - Uses real-world environmental examples and case studies formulated using the readily-available software environment in both MATLAB® and Python - Completely updated and expanded to include coverage of Python and reorganized for better navigability - Includes access to both an instructor site with exemplary lectures and solutions to problems and a supplementary site with MATLAB LiveScripts and Python Notebooks

Environmental Data Analysis


Environmental Data Analysis

Author: Carsten Dormann

language: en

Publisher: Springer Nature

Release Date: 2020-12-20


DOWNLOAD





Environmental Data Analysis is an introductory statistics textbook for environmental science. It covers descriptive, inferential and predictive statistics, centred on the Generalized Linear Model. The key idea behind this book is to approach statistical analyses from the perspective of maximum likelihood, essentially treating most analyses as (multiple) regression problems. The reader will be introduced to statistical distributions early on, and will learn to deploy models suitable for the data at hand, which in environmental science are often not normally distributed. To make the initially steep learning curve more manageable, each statistical chapter is followed by a walk-through in a corresponding R-based how-to chapter, which reviews the theory and applies it to environmental data. In this way, a coherent and expandable foundation in parametric statistics is laid, which can be expanded in advanced courses.The content has been “field-tested” in several years of courses on statistics for Environmental Science, Geography and Forestry taught at the University of Freiburg.

Introduction to Environmental Data Analysis and Modeling


Introduction to Environmental Data Analysis and Modeling

Author: Moses Eterigho Emetere

language: en

Publisher: Springer Nature

Release Date: 2020-01-03


DOWNLOAD





This book introduces numerical methods for processing datasets which may be of any form, illustrating adequately computational resolution of environmental alongside the use of open source libraries. This book solves the challenges of misrepresentation of datasets that are relevant directly or indirectly to the research. It illustrates new ways of screening datasets or images for maximum utilization. The adoption of various numerical methods in dataset treatment would certainly create a new scientific approach. The book enlightens researchers on how to analyse measurements to ensure 100% utilization. It introduces new ways of data treatment that are based on a sound mathematical and computational approach.