Ejemplos Pr Cticos De Redes Neuronales Mediante Matlab Y Python

Download Ejemplos Pr Cticos De Redes Neuronales Mediante Matlab Y Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ejemplos Pr Cticos De Redes Neuronales Mediante Matlab Y Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ejemplos prácticos de redes neuronales mediante MATLAB y PYTHON

Author: Óscar Reinoso García
language: es
Publisher: Universidad Miguel Hernández
Release Date: 2022
En este libro se recogen algunos ejercicios y desarrollos en los que se exponen diferentes alternativas de aplicación de procedimientos y métodos de Inteligencia Artificial mediante el uso de diferentes herramientas para su aplicación. En particular, a lo largo de este texto se van a presentar diferentes redes neuronales que pueden ser empleadas para la resolución de diferentes ejemplos y aplicaciones prácticas. En concreto, a lo largo de las diferentes unidades se hace uso tanto de Matlab, como de Python como herramientas para el desarrollo y evaluación práctica de estos ejercicios. MATLAB, acrónimo de MATrix LABoratory, constituye hoy en día una herramienta matemática muy potente y muy empleada por multitud de investigadores de todo tipo en todo el mundo, particularmente en Ingeniería. Constituye un software de carácter general muy empleado en universidades y centros de investigación de todo el mundo. Por otro lado, el lenguaje de programación Python se ha convertido durante los últimos años en un lenguaje muy empleado para abordar diferentes problemas y algoritmos que emplean técnicas de Inteligencia Artificial. No es el cometido de este libro abordar las características principales de este lenguaje de programación sino presentar algunas opciones en las que utilizando este lenguaje se pueden implementar estos algoritmos para abordar problemas sencillos de inteligencia artificial. Por último, nos centramos en abordar ejemplos prácticos de cómo se pueden emplear diferentes modelos de redes neuronales para solucionar algunos casos.
TÉCNICAS Y HERRAMIENTAS PARA LA INTELIGENCIA ARTIFICIAL. REDES NEURONALES A TRAVÉS DE R Y PYTHON

La Inteligencia Artificial combina algoritmos matemáticos y técnicas de Machine Learning, Deep Learning y Big Data para extraer el conocimiento contenido en los datos y presentarlo de forma comprensible y automática. En este libro se profundiza en el uso de las redes neuronales para aprendizaje supervisado y no supervisado. En cuanto al aprendizaje supervisado se tienen en cuenta las arquitecturas más comunes como Perceptrón Multicapa, Red de Base Radial, Redes ADALINE, Redes de HOPFIELD, Redes Probabilísticas, Redes Lineales, Redes de Regresión Generalizada, Redes LVQ, Redes Lineales y Redes para Optimización de Modelos de Regresión. En este apartado de análisis supervisado merecen especial atención las Redes Neuronales para Predicción de Series Temporales como la Red LSTM, las Redes GRU, las Redes Neuronales Recurrentes RNN, las Redes NARX, las Redes NNAR y en general las Redes Neuronales Dinámicas. En cuanto al aprendizaje no supervisado se desarrollan las Redes para Reconicimientio de Patrones y Análisis Cluster como las Redes de KOHONEN (Mapas autoorganizativos SOM), las Redes para Reconocimiento de Patrones, las Redes Neuronales Autoencoders, las Redes para Aprendizaje por Transferencia (Transfer Learning), Las Redes para Detección de Anomalías y las Redes Neuronales Convolucionales. Los sucesivos temas describen metodológicamente las arquitecturas de los diferentes tipos de redes neuronales y su utilidad en las aplicaciones prácticas. Además, para cada tipo de red neuronal se presentan ejemplos con una sintaxis óptima en los lenguajer R y Python.
ANÁLISIS DE SERIES TEMPORALES MEDIANTE REDES NEURONALES. EJEMPLOS CON MATLAB

MATLAB cuenta con la herramienta Deep Learning Toolbox que proporciona algoritmos, funciones y aplicaciones para crear, entrenar, visualizar y simular redes neuronales. Puede realizar clasificación, regresión, agrupamiento, reducción de dimensionalidad, pronóstico de series temporales y modelado y control de sistemas dinámicos. Las redes neuronales dinámicas son adecuadas para la predicción de series temporales. Puede utilizar la app Neural Net Time Series para resolver diferentes tipos de problemas de series temporales. Generalmente es mejor comenzar con la GUI y luego usarla para generar automáticamente scripts de línea de comandos. Antes de utilizar cualquiera de los métodos, el primer paso es definir el problema seleccionando un conjunto de datos. Cada GUI tiene acceso a muchos conjuntos de datos de muestra que puede utilizar para experimentar con la caja de herramientas. Si tiene un problema específico que desea resolver, puede cargar sus propios datos en el espacio de trabajo. Con MATLAB es posible resolver tres tipos diferentes de problemas de series temporales. En el primer tipo de problema de series de tiempo, se busca predecir valores futuros de una serie de tiempo y(t) a partir de valores pasados de esa serie de tiempo y valores pasados de una segunda serie de tiempo x(t). Esta forma de predicción se denomina red autorregresiva no lineal con entrada exógena (externa), o NARX. En el segundo tipo de problema de series temporales, sólo hay una serie involucrada. Los valores futuros de una serie temporal y(t) se predicen sólo a partir de valores pasados de esa serie. Esta forma de predicción se llama autorregresiva no lineal o NAR. El tercer problema de series de tiempo es similar al primer tipo, en el sentido de que están involucradas dos series, una serie de entrada (predictores) x(t) y una serie de salida (respuestas) y(t). Este libro desarrolla los métodos de predicción con series temporales a través de redes neuronales con MATLAB.