Dynamical Spectral And Arithmetic Zeta Functions

Download Dynamical Spectral And Arithmetic Zeta Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamical Spectral And Arithmetic Zeta Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamical, Spectral, and Arithmetic Zeta Functions

Author: Michel Laurent Lapidus
language: en
Publisher: American Mathematical Soc.
Release Date: 2001
The original zeta function was studied by Riemann as part of his investigation of the distribution of prime numbers. Other sorts of zeta functions were defined for number-theoretic purposes, such as the study of primes in arithmetic progressions. This led to the development of $L$-functions, which now have several guises. It eventually became clear that the basic construction used for number-theoretic zeta functions can also be used in other settings, such as dynamics, geometry, and spectral theory, with remarkable results. This volume grew out of the special session on dynamical, spectral, and arithmetic zeta functions held at the annual meeting of the American Mathematical Society in San Antonio, but also includes four articles that were invited to be part of the collection. The purpose of the meeting was to bring together leading researchers, to find links and analogies between their fields, and to explore new methods. The papers discuss dynamical systems, spectral geometry on hyperbolic manifolds, trace formulas in geometry and in arithmetic, as well as computational work on the Riemann zeta function. Each article employs techniques of zeta functions. The book unifies the application of these techniques in spectral geometry, fractal geometry, and number theory. It is a comprehensive volume, offering up-to-date research. It should be useful to both graduate students and confirmed researchers.
Fractal Geometry, Complex Dimensions and Zeta Functions

Author: Michel L. Lapidus
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-09-20
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features of this Second Edition: The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula The method of Diophantine approximation is used to study self-similar strings and flows Analytical and geometric methodsare used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions Throughout, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions, Second Edition will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.
Spectral Theory of Infinite-Area Hyperbolic Surfaces

This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition: "The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it." (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)