Dynamic Pricing With Demand Learning And Reference Effects

Download Dynamic Pricing With Demand Learning And Reference Effects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Pricing With Demand Learning And Reference Effects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Pricing with Demand Learning and Reference Effects

We consider a seller's dynamic pricing problem with demand learning and reference effects. We first study the case where customers are loss-averse: they have a reference price that can vary over time, and the demand reduction when the selling price exceeds the reference price dominates the demand increase when the selling price falls behind the reference price by the same amount. Thus, the expected demand as a function of price has a time-varying "kink" and is not differentiable everywhere. The seller neither knows the underlying demand function nor observes the time-varying reference prices. In this setting, we design and analyze a policy that (i) changes the selling price very slowly to control the evolution of the reference price, and (ii) gradually accumulates sales data to balance the tradeoff between learning and earning. We prove that, under a variety of reference-price updating mechanisms, our policy is asymptotically optimal; i.e., its T-period revenue loss relative to a clairvoyant who knows the demand function and the reference-price updating mechanism grows at the smallest possible rate in T. We also extend our analysis to the case of a fixed reference price, and show how reference effects increase the complexity of dynamic pricing with demand learning in this case. Moreover, we study the case where customers are gain-seeking and design asymptotically optimal policies for this case. Finally, we design and analyze an asymptotically optimal statistical test for detecting whether customers are loss-averse or gain-seeking.
Behavioral Consequences of Dynamic Pricing

Author: David Prakash
language: en
Publisher: BoD – Books on Demand
Release Date: 2022-08-19
Digital technologies are driving the application of dynamic pricing. Today, this pricing strategy is used not only for perishable products such as flights or hotel rooms, but for almost any product or service category. With dynamic pricing, retailers frequently adjust their prices over time to respond to factors such as demand, their supply and that of competitors, or the time of sale. Additionally, dynamic pricing allows retailers to take advantage of a large share of consumers' willingness to pay while avoiding losses from unsold products. Ultimately, this can lead to an increase in revenue and profit. However, the application of dynamic pricing comes with great challenges. In addition to the technological implementation, companies have to take into account that dynamic pricing can cause complex and unintended behavioral consequences on the consumer side. The key objective of this dissertation is to provide a deeper understanding of the impact of dynamic pricing on consumer behavior. To this end, this dissertation presents insights from four perspectives. First, how reference prices as a critical component in purchase decisions are operationalized. Second, how customers search for products priced dynamically, differentiated by business and private customers, as well as by different devices used for the search. Third, whether and how dynamic pricing influences the impact of internal reference prices on purchase decisions. Finally, this dissertation demonstrates that consumers perceive price changes as personalized in different purchase contexts, leading to reduced perceptions of fairness and undesirable behavioral consequences.
The Elements of Joint Learning and Optimization in Operations Management

This book examines recent developments in Operations Management, and focuses on four major application areas: dynamic pricing, assortment optimization, supply chain and inventory management, and healthcare operations. Data-driven optimization in which real-time input of data is being used to simultaneously learn the (true) underlying model of a system and optimize its performance, is becoming increasingly important in the last few years, especially with the rise of Big Data.