Dynamic Linear Models With R


Download Dynamic Linear Models With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Linear Models With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dynamic Linear Models with R


Dynamic Linear Models with R

Author: Giovanni Petris

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-06-12


DOWNLOAD





State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Mixture and Hidden Markov Models with R


Mixture and Hidden Markov Models with R

Author: Ingmar Visser

language: en

Publisher: Springer Nature

Release Date: 2022-06-28


DOWNLOAD





This book discusses mixture and hidden Markov models for modeling behavioral data. Mixture and hidden Markov models are statistical models which are useful when an observed system occupies a number of distinct “regimes” or unobserved (hidden) states. These models are widely used in a variety of fields, including artificial intelligence, biology, finance, and psychology. Hidden Markov models can be viewed as an extension of mixture models, to model transitions between states over time. Covering both mixture and hidden Markov models in a single book allows main concepts and issues to be introduced in the relatively simpler context of mixture models. After a thorough treatment of the theory and practice of mixture modeling, the conceptual leap towards hidden Markov models is relatively straightforward. This book provides many practical examples illustrating the wide variety of uses of the models. These examples are drawn from our own work in psychology, as well as other areas such as financial time series and climate data. Most examples illustrate the use of the authors’ depmixS4 package, which provides a flexible framework to construct and estimate mixture and hidden Markov models. All examples are fully reproducible and the accompanying hmmR package provides all the datasets used, as well as additional functionality. This book is suitable for advanced students and researchers with an applied background.

Time Series Analysis for the State-Space Model with R/Stan


Time Series Analysis for the State-Space Model with R/Stan

Author: Junichiro Hagiwara

language: en

Publisher: Springer Nature

Release Date: 2021-08-30


DOWNLOAD





This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability.