Complexity In Information Theory

Download Complexity In Information Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complexity In Information Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).
Complexity in Information Theory

Author: Yaser S. Abu-Mostafa
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The means and ends of information theory and computational complexity have grown significantly closer over the past decade. Common analytic tools, such as combinatorial mathematics and information flow arguments, have been the cornerstone of VLSl complexity and cooperative computation. The basic assumption of limited computing resources is the premise for cryptography, where the distinction is made between available information and accessible information. Numerous other examples of common goals and tools between the two disciplines have shaped a new research category of 'information and complexity theory'. This volume is intended to expose to the research community some of the recent significant topics along this theme. The contributions selected here are all very basic, presently active, fairly well-established, and stimulating for substantial follow-ups. This is not an encyclopedia on the subject, it is concerned only with timely contributions of sufficient coherence and promise. The styles of the six chapters cover a wide spectrum from specific mathematical results to surveys of large areas. It is hoped that the technical content and theme of this volume will help establish this general research area. I would like to thank the authors of the chapters for contributing to this volume. I also would like to thank Ed Posner for his initiative to address this subject systematically, and Andy Fyfe and Ruth Erlanson for proofreading some of the chapters.
Elements of Information Theory

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: Chapters reorganized to improve teaching 200 new problems New material on source coding, portfolio theory, and feedback capacity Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.