Dsmt Based Three Layer Method Using Multi Classifier To Detect Faults In Hydraulic Systems

Download Dsmt Based Three Layer Method Using Multi Classifier To Detect Faults In Hydraulic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dsmt Based Three Layer Method Using Multi Classifier To Detect Faults In Hydraulic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DSmT-based three-layer method using multi-classifier to detect faults in hydraulic systems

Fault identification in hydraulic valves is essential in maintaining the reliability and security of hydraulic systems. Due to the nonlinear characteristics of hydraulic systems under noisy working conditions, it is difficult to extract fault features from vibration signals collected from the surface of the valve body. Therefore, a DSmT-based three-layer method using multi-classifier is proposed to detect multiple faults occurred in hydraulic valves
Classification of Wear State for a Positive Displacement Pump Using Deep Machine Learning

Hydraulic power systems are commonly used in heavy industry (usually highly energy intensive and are often associated with high power losses. Designing a suitable system to allow an early assessment of the wear conditions of components in a hydraulic system (e.g., an axial piston pump) can effectively contribute to reducing energy losses during use. This paper presents the application of a deep machine learning system to determine the efficiency state of a multi-piston positive displacement pump. Such pumps are significant in high-power hydraulic systems. The correct operation of the entire hydraulic system often depends on its proper functioning. The wear and tear of individual pump components usually leads to a decrease in the pump’s operating pressure and volumetric losses, subsequently resulting in a decrease in overall pump efficiency and increases in vibration and pump noise. This in turn leads to an increase in energy losses throughout the hydraulic system, which releases excess heat. Typical failures of the discussed pumps and their causes are described after reviewing current research work using deep machine learning. Next, the test bench on which the diagnostic experiment was conducted and the selected operating signals that were recorded are described. The measured signals were subjected to a time–frequency analysis, and their features, calculated in terms of the time and frequency domains, underwent a significance ranking using the minimum redundancy maximum relevance (MRMR) algorithm. The next step was to design a neural network structure to classify the wear state of the pump and to test and evaluate the effectiveness of the network’s recognition of the pump’s condition. The whole study was summarized with conclusions.
Spatial Interpolation for Climate Data

This title gives an authoritative look at the use of Geographical Information Systems (GIS) in climatology and meterology. GIS provides a range of strategies, from traditional methods, such as those for hydromet database analysis and management, to new developing methods. As such, this book will provide a useful reference tool in this important aspect of climatology and meterology study.