Drone Development From Concept To Flight

Download Drone Development From Concept To Flight PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Drone Development From Concept To Flight book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Drone Development from Concept to Flight

Learn and apply the principles behind building and flying drones using components like BLDC motors and speed controllers, AeroGCS ground software, Ardupilot and PX4 open-source flight stacksalong with examples and best practices Key Features Get to grips with multicopter physics (roll, pitch, and yaw) and 3D dynamics for defining a drone's flight Optimize drone performance with powerful propulsion systems such as BLDS motors, lipo batteries, and ESCs Build a custom survey drone to learn vital aspects of drone assembly, configuration, testing, and maiden flight Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionUnlock opportunities in the growing UAV market where drones are revolutionizing diverse sectors like agriculture, surveying, and the military. This book walks you through the complete drone development life cycle, from concept to pilot stage, prototyping, and ultimately, a market-ready product, with domain-specific applications. Starting with an introduction to unmanned systems, principles of drone flight, and it's motion in 3D space, this book shows you how to design a propulsion system tailored to your drone’s needs. You’ll then get hands on with the entire drone assembly process, covering airframe, components, and wiring. Next, you’ll enhance drone connectivity and navigation with communication devices, such as RFD900, Herelink, and H-16 Pro GCS and hardware protocols like I2C, and UART. The book also guides you in using the open-source flight software ArduPilot and PX4, along with firmware architecture and PID tuning for advanced control. Additionally, you’ll go learn about AeroGCS, Mission Planner, and UGCS ground control stations, tips for maiden flight and log analysis for optimizing performance while building a custom survey drone with a 60-min endurance, 10km range, live video feed, and photography options. By the end of this book, you’ll be equipped with all you need to build and fly your own drones and UAVs.What you will learn Explore the design principles for multicopter flight and its physics of motion Grasp terminologies associated with UAV flight systems Implement power trail, communication, and propulsion conceptsin drone design Use IMUs and sensors in flight controllers, and protocols like I2C, SPI, and MAvlink Familiarize yourself with open-source drone flight stacks and ground control station software Apply the control law used in multicopter and the basics of PIDs Delve into modes of flying with remote controllers and analysis of flight logs Who this book is for This book is for beginner-level drone engineers, robotics engineers, hardware and design engineers, and hobbyists who want to enter the drone industry and enhance their knowledge of the physics, mechanics, avionics, and programming of drones, multicopters, and UAVs. While not a prerequisite, a basic understanding of circuits, microcontrollers, and electronic instruments like multimeter, camera, and batteries, along with fundamental concepts in physics and mathematics, will be helpful.
Advanced UAV Aerodynamics, Flight Stability and Control

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.
Industrial System Engineering for Drones

Explore a complex mechanical system where electronics and mechanical engineers work together as a cross-functional team. Using a working example, this book is a practical “how to” guide to designing a drone system. As system design becomes more and more complicated, systematic, and organized, there is an increasingly large gap in how system design happens in the industry versus what is taught in academia. While the system design basics and fundamentals mostly remain the same, the process, flow, considerations, and tools applied in industry are far different than that in academia. Designing Drone Systems takes you through the entire flow from system conception to design to production, bridging the knowledge gap between academia and the industry as you build your own drone systems. What You’ll Learn Gain a high level understanding of drone systems Design a drone systems and elaborating the various aspects and considerations of design Review the principles of the industrial system design process/flow, and the guidelines for drone systems Look at the challenges, limitations, best practices, and patterns of system design Who This Book Is For Primarily for beginning or aspiring system design experts, recent graduates, and system design engineers. Teachers, trainers, and system design mentors can also benefit from this content.