Drinfeld Modules

Download Drinfeld Modules PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Drinfeld Modules book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Drinfeld Modules

This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.
Drinfeld Modules, Modular Schemes And Applications

In his 1974 seminal paper 'Elliptic modules', V G Drinfeld introduced objects into the arithmetic geometry of global function fields which are nowadays known as 'Drinfeld Modules'. They have many beautiful analogies with elliptic curves and abelian varieties. They study of their moduli spaces leads amongst others to explicit class field theory, Jacquet-Langlands theory, and a proof of the Shimura-Taniyama-Weil conjecture for global function fields.This book constitutes a carefully written instructional course of 12 lectures on these subjects, including many recent novel insights and examples. The instructional part is complemented by research papers centering around class field theory, modular forms and Heegner points in the theory of global function fields.The book will be indispensable for everyone who wants a clear view of Drinfeld's original work, and wants to be informed about the present state of research in the theory of arithmetic geometry over function fields.
Cohomology of Drinfeld Modular Varieties, Part 1, Geometry, Counting of Points and Local Harmonic Analysis

Author: Gérard Laumon
language: en
Publisher: Cambridge University Press
Release Date: 1996
Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.