Dna Computing Based Genetic Algorithm

Download Dna Computing Based Genetic Algorithm PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dna Computing Based Genetic Algorithm book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DNA Computing Based Genetic Algorithm

This book focuses on the implementation, evaluation and application of DNA/RNA-based genetic algorithms in connection with neural network modeling, fuzzy control, the Q-learning algorithm and CNN deep learning classifier. It presents several DNA/RNA-based genetic algorithms and their modifications, which are tested using benchmarks, as well as detailed information on the implementation steps and program code. In addition to single-objective optimization, here genetic algorithms are also used to solve multi-objective optimization for neural network modeling, fuzzy control, model predictive control and PID control. In closing, new topics such as Q-learning and CNN are introduced. The book offers a valuable reference guide for researchers and designers in system modeling and control, and for senior undergraduate and graduate students at colleges and universities.
Intelligent Computing Everywhere

Author: Alfons Schuster
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-10-04
This book reflects the current perception in various fields that modern computing applications are becoming increasingly challenged in terms of complexity and intelligence. It investigates the relevance and relationship artificial intelligence maintains with "modern strands of computing". These consist of pervasive computing and ambient intelligence, bioinformatics, neuroinformatics, computing and the mind, non-classical computing and novel computing models, as well as DNA computing and quantum computing.
Evolutionary Computation

Edited by professionals with years of experience, this book provides an introduction to the theory of evolutionary algorithms and single- and multi-objective optimization, and then goes on to discuss to explore applications of evolutionary algorithms for many uses with real-world applications. Covering both the theory and applications of evolutionary computation, the book offers exhaustive coverage of several topics on nontraditional evolutionary techniques, details working principles of new and popular evolutionary algorithms, and discusses case studies on both scientific and real-world applications of optimization