Distribution Free Methods For Statistical Process Monitoring And Control

Download Distribution Free Methods For Statistical Process Monitoring And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distribution Free Methods For Statistical Process Monitoring And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Distribution-Free Methods for Statistical Process Monitoring and Control

This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.
Distribution-free Methods for Statistical Process Monitoring and Control

This book explores nonparametric statistical process control. It provides an up-to-date overview of nonparametric Shewhart-type univariate control charts, and reviews the recent literature on nonparametric charts, particularly multivariate schemes. Further, it discusses observations tied to the monitored population quantile, focusing on the Shewhart Sign chart. The book also addresses the issue of practically assuming the normality and the independence when a process is statistically monitored, and examines in detail change-point analysis-based distribution-free control charts designed for Phase I applications. Moreover, it introduces six distribution-free EWMA schemes for simultaneously monitoring the location and scale parameters of a univariate continuous process, and establishes two nonparametric Shewhart-type control charts based on order statistics with signaling runs-type rules. Lastly, the book proposes novel and effective method for early disease detection.
Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science

This book presents a unique collection of contributions on modern methods and applications in three key areas of statistics, celebrating the significant work of Wolfgang Schmid in this field. It is structured thematically into parts focusing on statistical process monitoring, financial statistics, and spatial statistics with environmetrics, each featuring chapters from leading experts. The opening articles on statistical process monitoring present novel methodologies for the detection of anomalies and control charting techniques, which are crucial for maintaining quality in manufacturing processes. Detailed discussions are included on integrating multivariate statistical methods and real-time monitoring to enhance process reliability and efficiency. The part on financial statistics explores rigorous approaches in financial econometrics, with an emphasis on dynamic modelling of market volatility and risk assessment. Contributions cover advanced asset allocation strategies, leveraging high-dimensional data analysis, and the application of machine learning techniques. Spatial statistics and environmetrics are addressed through innovative research on the statistical analysis of environmental data. This includes the use of geostatistical models and hybrid models that combine traditional statistical techniques with machine learning to improve the prediction of environmental phenomena. Key topics here involve the modelling of extremes and airborne pollutants, the prediction of earthquakes using a smartphone-based sensor network, and reviews of selected topics essential in modern spatial statistics. Each part not only reflects Wolfgang Schmid’s interests and impact in these areas but also provides detailed theoretical and applied studies, demonstrating how these sophisticated statistical methods can be effectively employed in practical scenarios. This makes the book an indispensable resource for researchers and practitioners looking to apply cutting-edge statistical techniques in these complex fields.