Hilbert Space Splittings And Iterative Methods

Download Hilbert Space Splittings And Iterative Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Hilbert Space Splittings And Iterative Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Hilbert Space Splittings and Iterative Methods

This book is about the theory of so-called Schwarz methods for solving variational problems in a Hilbert space V arising from linear equations and their associated quadratic minimization problems. Schwarz methods are based on the construction of a sequence of approximate solutions by solving auxiliary variational problems on a set of (smaller, finite-dimensional) Hilbert spaces $V_i$ in a certain order, combining them, and using the combined approximations in an iterative procedure. The spaces $V_i$ form a so-called space splitting for V, they need not necessarily be subspaces of V, and their number can be finite or infinite. The convergence behavior of Schwarz methods is influenced by certain properties of the space splittings they are based on. These properties are identified, and a detailed treatment of traditional deterministic and more recent greedy and stochastic orderings in the subproblem solution process is given, together with an investigation of accelerated methods. To illustrate the abstract theory, the numerical linear algebra analogs of the iterative methods covered in the book are discussed. Its standard application to the convergence theory of multilevel and domain decomposition methods for solving PDE problems is explained, and links to optimization theory and online learning algorithms are given. Providing an introduction and overview of iterative methods which are based on problem decompositions and suitable for parallel and distributed computing, the book could serve as the basis for a one- or two-semester course for M.S. and Ph.D. students specializing in numerical analysis and scientific computing. It will also appeal to a wide range of researchers interested in scientific computing in the broadest sense.
New Splitting Iterative Methods for Solving Multidimensional Neutron Transport Equations

Author: Jacques Tagoudjeu
language: en
Publisher: Universal-Publishers
Release Date: 2011-04
This thesis focuses on iterative methods for the treatment of the steady state neutron transport equation in slab geometry, bounded convex domain of Rn (n = 2,3) and in 1-D spherical geometry. We introduce a generic Alternate Direction Implicit (ADI)-like iterative method based on positive definite and m-accretive splitting (PAS) for linear operator equations with operators admitting such splitting. This method converges unconditionally and its SOR acceleration yields convergence results similar to those obtained in presence of finite dimensional systems with matrices possessing the Young property A. The proposed methods are illustrated by a numerical example in which an integro-differential problem of transport theory is considered. In the particular case where the positive definite part of the linear equation operator is self-adjoint, an upper bound for the contraction factor of the iterative method, which depends solely on the spectrum of the self-adjoint part is derived. As such, this method has been successfully applied to the neutron transport equation in slab and 2-D cartesian geometry and in 1-D spherical geometry. The self-adjoint and m-accretive splitting leads to a fixed point problem where the operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of minimal residual and preconditioned minimal residual algorithms using Gauss-Seidel, symmetric Gauss-Seidel and polynomial preconditioning are then applied to solve the matrix operator equation. Theoretical analysis shows that the methods converge unconditionally and upper bounds of the rate of residual decreasing which depend solely on the spectrum of the self-adjoint part of the operator are derived. The convergence of theses solvers is illustrated numerically on a sample neutron transport problem in 2-D geometry. Various test cases, including pure scattering and optically thick domains are considered.